Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1199484

Neural networks for student performance in higher education: Preliminary bibliometric analysis


Bilal Zorić, Alisa; Miloloža, Ivan; Pejić Bach, Mirjana
Neural networks for student performance in higher education: Preliminary bibliometric analysis // INTERDISCIPLINARY MANAGEMENT RESEARCH XVIII / Erceg, Aleksandar ; Požega, Željko (ur.).
Osijek: Ekonomski fakultet Sveučilišta Josipa Jurja Strossmayera u Osijeku, 2022. str. 762-781 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1199484 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Neural networks for student performance in higher education: Preliminary bibliometric analysis

Autori
Bilal Zorić, Alisa ; Miloloža, Ivan ; Pejić Bach, Mirjana

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
INTERDISCIPLINARY MANAGEMENT RESEARCH XVIII / Erceg, Aleksandar ; Požega, Željko - Osijek : Ekonomski fakultet Sveučilišta Josipa Jurja Strossmayera u Osijeku, 2022, 762-781

Skup
18th Interdisciplinary Management Research (IMR 2022)

Mjesto i datum
Opatija, Hrvatska, 05.05.2022. - 07.05.2022

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
neural network, higher education, educational data mining, student performance

Sažetak
Neural networks or artificial neural networks are a branch of machine learning, a technology based on brain and nervous system studies. Thanks to the fast-technological changes, growing computing power, advanced algorithms, and widely available digital data, the application of neural networks has spread tremendously in many fields of study, from health and medicine, accounting, finance, engineering, manufacturing, and marketing to natural language processing and robotics, wherever the analysis of big sets of data is needed. This paper focuses on using neural networks in higher educational institutions for student performance analysis and prediction, intending to investigate these researches' bibliometric and topical characteristics published in scientific papers. We have searched the indexing service Scopus to track the papers that present the applications of neural networks in higher education in the last five years. The research has been investigated based on the bibliometric characteristics (authors, publications, institutions, funding) as well as the topics of the research. The presented analysis is preliminary and can be relevant for future in- depth research on the applications of neural networks for the analysis of student performance in higher education.

Izvorni jezik
Engleski

Znanstvena područja
Ekonomija, Informacijske i komunikacijske znanosti



POVEZANOST RADA


Ustanove:
Ekonomski fakultet, Zagreb,
Veleučilište s pravom javnosti Baltazar Zaprešić

Citiraj ovu publikaciju:

Bilal Zorić, Alisa; Miloloža, Ivan; Pejić Bach, Mirjana
Neural networks for student performance in higher education: Preliminary bibliometric analysis // INTERDISCIPLINARY MANAGEMENT RESEARCH XVIII / Erceg, Aleksandar ; Požega, Željko (ur.).
Osijek: Ekonomski fakultet Sveučilišta Josipa Jurja Strossmayera u Osijeku, 2022. str. 762-781 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Bilal Zorić, A., Miloloža, I. & Pejić Bach, M. (2022) Neural networks for student performance in higher education: Preliminary bibliometric analysis. U: Erceg, A. & Požega, Ž. (ur.)INTERDISCIPLINARY MANAGEMENT RESEARCH XVIII.
@article{article, author = {Bilal Zori\'{c}, Alisa and Milolo\v{z}a, Ivan and Peji\'{c} Bach, Mirjana}, year = {2022}, pages = {762-781}, keywords = {neural network, higher education, educational data mining, student performance}, title = {Neural networks for student performance in higher education: Preliminary bibliometric analysis}, keyword = {neural network, higher education, educational data mining, student performance}, publisher = {Ekonomski fakultet Sveu\v{c}ili\v{s}ta Josipa Jurja Strossmayera u Osijeku}, publisherplace = {Opatija, Hrvatska} }
@article{article, author = {Bilal Zori\'{c}, Alisa and Milolo\v{z}a, Ivan and Peji\'{c} Bach, Mirjana}, year = {2022}, pages = {762-781}, keywords = {neural network, higher education, educational data mining, student performance}, title = {Neural networks for student performance in higher education: Preliminary bibliometric analysis}, keyword = {neural network, higher education, educational data mining, student performance}, publisher = {Ekonomski fakultet Sveu\v{c}ili\v{s}ta Josipa Jurja Strossmayera u Osijeku}, publisherplace = {Opatija, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font