Pregled bibliografske jedinice broj: 1198526
The Influence of Noise on 2D Gaussian Profile Parameters Estimation
The Influence of Noise on 2D Gaussian Profile Parameters Estimation // 2021 44th International Convention on Information, Communication and Electronic Technology (MIPRO) / Skala, Karolj (ur.).
Rijeka, 2021. str. 1193-1198 doi:10.23919/MIPRO52101.2021.9596661 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1198526 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
The Influence of Noise on 2D Gaussian Profile Parameters Estimation
Autori
Gribl, Anita ; Petrinović, Davor
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
2021 44th International Convention on Information, Communication and Electronic Technology (MIPRO)
/ Skala, Karolj - Rijeka, 2021, 1193-1198
Skup
44th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO 2021)
Mjesto i datum
Opatija, Hrvatska, 27.09.2021. - 01.10.2021
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Additives ; Parameter estimation ; Quantization (signal) ; Gaussian noise ; Robustness ; Noise measurement ; Object recognition
Sažetak
The precise estimation of the Gaussian profile parameters plays an important role in many scientific fields. In astronomical images, the 2D Gaussian profiles are good approximations of stellar objects, which are point sources spread in the image plane due to various degradations in the imaging process. The accurate estimation of the 2D Gaussian parameters enables stellar object identification and outlier detection. However, various noise types present in astronomical images complicate the estimation process. Image noise can have an additive or multiplicative nature. The primary cause of additive noise is the so-called readout noise, which has a Gaussian distribution and is temperature-dependent. The second noise type is the multiplicative Poisson noise caused by the quantum nature of the light with the standard deviation proportional to the square root of the pixel intensity. Additionally, there are uniformly distributed quantization noise caused by the conversion of the continuous signal to discrete levels and heavy-tailed salt and pepper noise caused by the bad pixels. All these noise types represent the challenge in the precise estimation of Gaussian parameters. Since the iteratively reweighted least squares method (IRWLS) with Huber weights calculated from statistical analysis of estimation errors showed a good performance as a robust estimator in other applications, it is used in this paper for the 2D Gaussian profile parameters estimation from noisy data. The goal of this paper is to analyze the robustness of the IRWLS method to different noise types.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo
POVEZANOST RADA
Projekti:
HRZZ-IP-2019-04-6703 - Renesansa teorije uzorkovanja (SamplingRenaissance) (Seršić, Damir, HRZZ ) ( CroRIS)
--KK.01.1.1.01.009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (DATACROSS) (Šmuc, Tomislav; Lončarić, Sven; Petrović, Ivan; Jokić, Andrej; Palunko, Ivana) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb