Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1197348

Automated pattern recognition in whole-cardiac cycle echocardiographic data: capturing functional phenotypes with machine learning


Lončarić, Filip; Marti Castellote, Pablo-Miki; Sanchez-Martinez, Sergio; Fabijanović, Dora; Nunno, Loredana; Mimbrero, Maria; Sanchis, Laura; Doltra, Adelina; Montserrat, Silvia; Čikeš, Maja et al.
Automated pattern recognition in whole-cardiac cycle echocardiographic data: capturing functional phenotypes with machine learning // Journal of the american society of echocardiography, 34 (2021), 11; 1170-1183 doi:10.1016/j.echo.2021.06.014 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1197348 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Automated pattern recognition in whole-cardiac cycle echocardiographic data: capturing functional phenotypes with machine learning

Autori
Lončarić, Filip ; Marti Castellote, Pablo-Miki ; Sanchez-Martinez, Sergio ; Fabijanović, Dora ; Nunno, Loredana ; Mimbrero, Maria ; Sanchis, Laura ; Doltra, Adelina ; Montserrat, Silvia ; Čikeš, Maja ; Crispi, Fatima ; Piella, Gema ; Sitges, Marta ; Bijnens, Bart

Izvornik
Journal of the american society of echocardiography (0894-7317) 34 (2021), 11; 1170-1183

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
arterial hypertension ; clustering ; machine learning ; remodeling ; speckle-tracking

Sažetak
Background: Echocardiography provides complex data on cardiac function that can be integrated into patterns of dysfunction related to the severity of cardiac disease. The aim of this study was to demonstrate the feasibility of applying machine learning (ML) to automate the integration of echocardiographic data from the whole cardiac cycle and to automatically recognize patterns in velocity profiles and deformation curves, allowing the identification of functional phenotypes. Methods: Echocardiography was performed in 189 clinically managed patients with hypertension and 97 healthy individuals without hypertension. Speckle-tracking analysis of the left ventricle and atrium was performed, and deformation curves were extracted. Aortic and mitral blood pool pulsed-wave Doppler and mitral annular tissue pulsed-wave Doppler velocity profiles were obtained. These whole-cardiac cycle deformation and velocity curves were used as ML input. Unsupervised ML was used to create a representation of patients with hypertension in a virtual space in which patients are positioned on the basis of the similarity of their integrated whole-cardiac cycle echocardiography data. Regression methods were used to explore patterns of echocardiographic traces within this virtual ML-derived space, while clustering was used to define phenogroups. Results: The algorithm captured different patterns in tissue and blood-pool velocity and deformation profiles and integrated the findings, yielding phenotypes related to normal cardiac function and others to advanced remodeling associated with pressure overload in hypertension. The addition of individuals without hypertension into the ML- derived space confirmed the interpretation of normal and remodeled phenotypes. Conclusions: ML-based pattern recognition is feasible from echocardiographic data obtained during the whole cardiac cycle. Automated algorithms can consistently capture patterns in velocity and deformation data and, on the basis of these patterns, group patients into interpretable, clinically comprehensive phenogroups that describe structural and functional remodeling. Automated pattern recognition may potentially aid interpretation of imaging data and diagnostic accuracy.

Izvorni jezik
Engleski

Znanstvena područja
Kliničke medicinske znanosti



POVEZANOST RADA


Ustanove:
Medicinski fakultet, Zagreb

Profili:

Avatar Url Maja Čikeš (autor)

Poveznice na cjeloviti tekst rada:

doi

Citiraj ovu publikaciju:

Lončarić, Filip; Marti Castellote, Pablo-Miki; Sanchez-Martinez, Sergio; Fabijanović, Dora; Nunno, Loredana; Mimbrero, Maria; Sanchis, Laura; Doltra, Adelina; Montserrat, Silvia; Čikeš, Maja et al.
Automated pattern recognition in whole-cardiac cycle echocardiographic data: capturing functional phenotypes with machine learning // Journal of the american society of echocardiography, 34 (2021), 11; 1170-1183 doi:10.1016/j.echo.2021.06.014 (međunarodna recenzija, članak, znanstveni)
Lončarić, F., Marti Castellote, P., Sanchez-Martinez, S., Fabijanović, D., Nunno, L., Mimbrero, M., Sanchis, L., Doltra, A., Montserrat, S. & Čikeš, M. (2021) Automated pattern recognition in whole-cardiac cycle echocardiographic data: capturing functional phenotypes with machine learning. Journal of the american society of echocardiography, 34 (11), 1170-1183 doi:10.1016/j.echo.2021.06.014.
@article{article, author = {Lon\v{c}ari\'{c}, Filip and Marti Castellote, Pablo-Miki and Sanchez-Martinez, Sergio and Fabijanovi\'{c}, Dora and Nunno, Loredana and Mimbrero, Maria and Sanchis, Laura and Doltra, Adelina and Montserrat, Silvia and \v{C}ike\v{s}, Maja and Crispi, Fatima and Piella, Gema and Sitges, Marta and Bijnens, Bart}, year = {2021}, pages = {1170-1183}, DOI = {10.1016/j.echo.2021.06.014}, keywords = {arterial hypertension, clustering, machine learning, remodeling, speckle-tracking}, journal = {Journal of the american society of echocardiography}, doi = {10.1016/j.echo.2021.06.014}, volume = {34}, number = {11}, issn = {0894-7317}, title = {Automated pattern recognition in whole-cardiac cycle echocardiographic data: capturing functional phenotypes with machine learning}, keyword = {arterial hypertension, clustering, machine learning, remodeling, speckle-tracking} }
@article{article, author = {Lon\v{c}ari\'{c}, Filip and Marti Castellote, Pablo-Miki and Sanchez-Martinez, Sergio and Fabijanovi\'{c}, Dora and Nunno, Loredana and Mimbrero, Maria and Sanchis, Laura and Doltra, Adelina and Montserrat, Silvia and \v{C}ike\v{s}, Maja and Crispi, Fatima and Piella, Gema and Sitges, Marta and Bijnens, Bart}, year = {2021}, pages = {1170-1183}, DOI = {10.1016/j.echo.2021.06.014}, keywords = {arterial hypertension, clustering, machine learning, remodeling, speckle-tracking}, journal = {Journal of the american society of echocardiography}, doi = {10.1016/j.echo.2021.06.014}, volume = {34}, number = {11}, issn = {0894-7317}, title = {Automated pattern recognition in whole-cardiac cycle echocardiographic data: capturing functional phenotypes with machine learning}, keyword = {arterial hypertension, clustering, machine learning, remodeling, speckle-tracking} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font