Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1197272

Equivariant shape


Antonian, S. A.; Mardešić, Sibe
Equivariant shape // Fundamenta mathematicae, 127 (1987), 3; 213-224 doi:10.4064/fm-127-3-213-224 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1197272 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Equivariant shape

Autori
Antonian, S. A. ; Mardešić, Sibe

Izvornik
Fundamenta mathematicae (0016-2736) 127 (1987), 3; 213-224

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
action of a compact topological group ; equivariant shape category ; resolutions and expansions of topological spaces ; G-resolutions ; G- expansions ; G-ANR-resolution

Sažetak
This paper deals with the construction of an equivariant shape category ShG for topological spaces endowed with an action of a (fixed) compact topological group G. The construction of ShG is an equivariant version of the inverse system approach to ordinary shape developed by the second author and J. Segal [Shape Theory (1982 ; Zbl 0495.55001)]. With obvious modifications, the definitions of resolutions and expansions of topological spaces can be applied to the equivariant case: This gives the concepts of G-resolutions and G- expansions of G-spaces. The basic theorems are the following. (1) Every G-space X admits a G-ANR-resolution, i.e. a G-resolution \b{;p};: X→X−− in pro-TopG (TopG = category of G-spaces and G-maps) such that \b{;X}; consists of G-ANRs. (2) For every G- resolution \b{;p};: X→X−−, the induced [\b{;p};]: X→[X−−] in pro-[TopG] ([TopG] = equivariant homotopy category of TopG) is a G-expansion. The category ShG is then defined as follows. The objects are all G-spaces ; the morphisms between G-spaces X, Y are equivalence classes of triples ([\b{;p};], [\b{;q};], [\b{;f};]), where [\b{;p};]: X→[X−−], [\b{;q};]: Y→[Y−−] are G-ANR-expansions and [\b{;f};]: [\b{;X};]→[Y−−] is a morphism of pro-[TopG]. A G-shape functor [TopG]→ShG can be defined in the obvious way.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Sibe Mardešić (autor)

Poveznice na cjeloviti tekst rada:

doi www.impan.pl www.impan.pl

Citiraj ovu publikaciju:

Antonian, S. A.; Mardešić, Sibe
Equivariant shape // Fundamenta mathematicae, 127 (1987), 3; 213-224 doi:10.4064/fm-127-3-213-224 (međunarodna recenzija, članak, znanstveni)
Antonian, S. & Mardešić, S. (1987) Equivariant shape. Fundamenta mathematicae, 127 (3), 213-224 doi:10.4064/fm-127-3-213-224.
@article{article, author = {Antonian, S. A. and Marde\v{s}i\'{c}, Sibe}, year = {1987}, pages = {213-224}, DOI = {10.4064/fm-127-3-213-224}, keywords = {action of a compact topological group, equivariant shape category, resolutions and expansions of topological spaces, G-resolutions, G- expansions, G-ANR-resolution}, journal = {Fundamenta mathematicae}, doi = {10.4064/fm-127-3-213-224}, volume = {127}, number = {3}, issn = {0016-2736}, title = {Equivariant shape}, keyword = {action of a compact topological group, equivariant shape category, resolutions and expansions of topological spaces, G-resolutions, G- expansions, G-ANR-resolution} }
@article{article, author = {Antonian, S. A. and Marde\v{s}i\'{c}, Sibe}, year = {1987}, pages = {213-224}, DOI = {10.4064/fm-127-3-213-224}, keywords = {action of a compact topological group, equivariant shape category, resolutions and expansions of topological spaces, G-resolutions, G- expansions, G-ANR-resolution}, journal = {Fundamenta mathematicae}, doi = {10.4064/fm-127-3-213-224}, volume = {127}, number = {3}, issn = {0016-2736}, title = {Equivariant shape}, keyword = {action of a compact topological group, equivariant shape category, resolutions and expansions of topological spaces, G-resolutions, G- expansions, G-ANR-resolution} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • MathSciNet
  • Zentrallblatt für Mathematik/Mathematical Abstracts


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font