Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1196917

Classification of Low-Resolution Flying Objects in Videos Using the Machine Learning Approach


Stančić, Ivo; Veić Lucija; Musić, Josip; Grujić, Tamara
Classification of Low-Resolution Flying Objects in Videos Using the Machine Learning Approach // Advances in Electrical and Computer Engineering, 22 (2022), 2; 45-52 doi:10.4316/AECE.2022.02006 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1196917 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Classification of Low-Resolution Flying Objects in Videos Using the Machine Learning Approach

Autori
Stančić, Ivo ; Veić Lucija ; Musić, Josip ; Grujić, Tamara

Izvornik
Advances in Electrical and Computer Engineering (1582-7445) 22 (2022), 2; 45-52

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
artificial neural networks, computer vision, feature extraction, machine learning, object detection.

Sažetak
A challenge of detecting and identifying drones has emerged due to the significant increase in recreational and commercial drones operating range, payload size, and overall capabilities. Consequently, drones may pose a risk to airspace safety or violate non-flying zone in the vicinity of vulnerable buildings. This paper presents an initial study for a machinelearning classification system applied to flying objects visible with a low resolution that is too distant from the camera to be efficiently classified by other methods. The original dataset in form of labeled high-resolution videos containing lowresolution drone, bird, and airplane objects was collected and carefully prepared. Computationally inexpensive features based on object shape and trajectory descriptors were recommended and tested with several ML models. The accuracy of the best- proposed model tested on our dataset was 98%. The results of this study demonstrate that Machine Learning classification seems to be promising and can be implemented in future multi-stage drone detection and identification system.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo, Vojno-obrambene i sigurnosno-obavještajne znanosti i umijeće



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split

Profili:

Avatar Url Tamara Grujić (autor)

Avatar Url Josip Musić (autor)

Avatar Url Ivo Stančić (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada doi aece.ro

Citiraj ovu publikaciju:

Stančić, Ivo; Veić Lucija; Musić, Josip; Grujić, Tamara
Classification of Low-Resolution Flying Objects in Videos Using the Machine Learning Approach // Advances in Electrical and Computer Engineering, 22 (2022), 2; 45-52 doi:10.4316/AECE.2022.02006 (međunarodna recenzija, članak, znanstveni)
Stančić, I., Veić Lucija, Musić, J. & Grujić, T. (2022) Classification of Low-Resolution Flying Objects in Videos Using the Machine Learning Approach. Advances in Electrical and Computer Engineering, 22 (2), 45-52 doi:10.4316/AECE.2022.02006.
@article{article, author = {Stan\v{c}i\'{c}, Ivo and Musi\'{c}, Josip and Gruji\'{c}, Tamara}, year = {2022}, pages = {45-52}, DOI = {10.4316/AECE.2022.02006}, keywords = {artificial neural networks, computer vision, feature extraction, machine learning, object detection.}, journal = {Advances in Electrical and Computer Engineering}, doi = {10.4316/AECE.2022.02006}, volume = {22}, number = {2}, issn = {1582-7445}, title = {Classification of Low-Resolution Flying Objects in Videos Using the Machine Learning Approach}, keyword = {artificial neural networks, computer vision, feature extraction, machine learning, object detection.} }
@article{article, author = {Stan\v{c}i\'{c}, Ivo and Musi\'{c}, Josip and Gruji\'{c}, Tamara}, year = {2022}, pages = {45-52}, DOI = {10.4316/AECE.2022.02006}, keywords = {artificial neural networks, computer vision, feature extraction, machine learning, object detection.}, journal = {Advances in Electrical and Computer Engineering}, doi = {10.4316/AECE.2022.02006}, volume = {22}, number = {2}, issn = {1582-7445}, title = {Classification of Low-Resolution Flying Objects in Videos Using the Machine Learning Approach}, keyword = {artificial neural networks, computer vision, feature extraction, machine learning, object detection.} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font