Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1196630

Using neural network modelling for estimation and forecasting of transport sector energy demand in developing countries


Maaouane, Mohamed; Chennaif, Mohammed; Zouggar, Smail; Krajačić, Goran; Duić, Neven; Zahboune, Hassan; Kerkour ElMiad, Aissa
Using neural network modelling for estimation and forecasting of transport sector energy demand in developing countries // Energy conversion and management, 258 (2022) doi:10.1016/j.enconman.2022.115556 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1196630 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Using neural network modelling for estimation and forecasting of transport sector energy demand in developing countries

Autori
Maaouane, Mohamed ; Chennaif, Mohammed ; Zouggar, Smail ; Krajačić, Goran ; Duić, Neven ; Zahboune, Hassan ; Kerkour ElMiad, Aissa

Izvornik
Energy conversion and management (0196-8904) 258 (2022); 115556, 0

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
ANN ; Transport sector ; Energy efficiency indicators ; Energy demand ; Bottom-up approach

Sažetak
In developing countries, national-level institutions are often limited by key transportation energy efficiency indicators. A transportation model based on 40 artificial neural networks was developed to fill this gap. Data on energy efficiency indicators for 28 European countries have been collected to train a model for predicting these indicators using socio-economic variables. A bottom-up approach is then used to compare the predicted data to the total energy consumption. Morocco is used as a case study because of the absence of its energy efficiency indicators. The model's outstanding performance was proved after calculating energy demand at a highly disaggregated level. The model was used to forecast energy consumption up to 2050, considering a variety of alternative hypotheses. Four long-term energy demand scenarios were evaluated: frozen efficiency, implementation of EU legislation, cars electrification, and modal shift. The redistribution of passenger kilometres and tonne-kilometres as a way of rising average occupancy and average load revealed a significantly greater potential for energy savings. Switching from diesel to biofuel for buses and light cars was also examined as a solution to minimize GHG emissions. The developed model supplies decision-making institutions with the necessary tools for identifying critical issues, implementing policies, and redistributing infrastructure.

Izvorni jezik
Engleski

Znanstvena područja
Strojarstvo



POVEZANOST RADA


Ustanove:
Fakultet strojarstva i brodogradnje, Zagreb

Profili:

Avatar Url Neven Duić (autor)

Avatar Url Goran Krajačić (autor)

Poveznice na cjeloviti tekst rada:

doi www.sciencedirect.com

Citiraj ovu publikaciju:

Maaouane, Mohamed; Chennaif, Mohammed; Zouggar, Smail; Krajačić, Goran; Duić, Neven; Zahboune, Hassan; Kerkour ElMiad, Aissa
Using neural network modelling for estimation and forecasting of transport sector energy demand in developing countries // Energy conversion and management, 258 (2022) doi:10.1016/j.enconman.2022.115556 (međunarodna recenzija, članak, znanstveni)
Maaouane, M., Chennaif, M., Zouggar, S., Krajačić, G., Duić, N., Zahboune, H. & Kerkour ElMiad, A. (2022) Using neural network modelling for estimation and forecasting of transport sector energy demand in developing countries. Energy conversion and management, 258 doi:10.1016/j.enconman.2022.115556.
@article{article, author = {Maaouane, Mohamed and Chennaif, Mohammed and Zouggar, Smail and Kraja\v{c}i\'{c}, Goran and Dui\'{c}, Neven and Zahboune, Hassan and Kerkour ElMiad, Aissa}, year = {2022}, DOI = {10.1016/j.enconman.2022.115556}, chapter = {115556}, keywords = {ANN, Transport sector, Energy efficiency indicators, Energy demand, Bottom-up approach}, journal = {Energy conversion and management}, doi = {10.1016/j.enconman.2022.115556}, volume = {258}, issn = {0196-8904}, title = {Using neural network modelling for estimation and forecasting of transport sector energy demand in developing countries}, keyword = {ANN, Transport sector, Energy efficiency indicators, Energy demand, Bottom-up approach}, chapternumber = {115556} }
@article{article, author = {Maaouane, Mohamed and Chennaif, Mohammed and Zouggar, Smail and Kraja\v{c}i\'{c}, Goran and Dui\'{c}, Neven and Zahboune, Hassan and Kerkour ElMiad, Aissa}, year = {2022}, DOI = {10.1016/j.enconman.2022.115556}, chapter = {115556}, keywords = {ANN, Transport sector, Energy efficiency indicators, Energy demand, Bottom-up approach}, journal = {Energy conversion and management}, doi = {10.1016/j.enconman.2022.115556}, volume = {258}, issn = {0196-8904}, title = {Using neural network modelling for estimation and forecasting of transport sector energy demand in developing countries}, keyword = {ANN, Transport sector, Energy efficiency indicators, Energy demand, Bottom-up approach}, chapternumber = {115556} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font