Pregled bibliografske jedinice broj: 1196602
Introduction to Deep Learning Possibilities in Communication Systems
Introduction to Deep Learning Possibilities in Communication Systems // Proceedings ELMAR-2021
Zadar, Hrvatska: Institute of Electrical and Electronics Engineers (IEEE), 2021. str. 21-24 doi:10.1109/elmar52657.2021.9550825 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), stručni)
CROSBI ID: 1196602 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Introduction to Deep Learning Possibilities in Communication Systems
Autori
Zeger, Ivana ; Sisul, Gordan
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), stručni
Izvornik
Proceedings ELMAR-2021
/ - : Institute of Electrical and Electronics Engineers (IEEE), 2021, 21-24
ISBN
978-1-6654-4437-8
Skup
63rd International Symposium ELMAR-2021
Mjesto i datum
Zadar, Hrvatska, 13.09.2021. - 15.09.2021
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Communication System ; Deep Learning ; End-to-End System ; Autoencoder ; Neural Network ; Modulation Classification
Sažetak
The considerable requests imposed on modern communication systems have inspired re-evaluation of the existing well-defined and elaborated communication theory. It has become debatable whether the current system implementations have become obsolete or may be able to cope with the challenges if combined with new technologies. The idea of developing entirely new approaches has also risen. Recent advances in machine learning and especially deep learning techniques indicate possible new research directions. This paper states the reasons behind the introduction of deep learning in communications. The paper provides the separation of the existing research procedures. Special focus is put on analyzing different areas of appliance and defining their advantages and disadvantages, including the formation of end-to-end communication systems as autoencoders and neural network contribution in signal detection and modulation classification. The results indicate strong usage potential of deep learning in communications in not already optimized areas.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo
POVEZANOST RADA
Projekti:
HRZZ-IP-2019-04-1064 - Pametna platforma za daljinska istraživanja u okolišu i industriji primjenom milimetarskih valova (MMSENSE) (Bosiljevac, Marko, HRZZ ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb