Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1196442

Iterative Refinement of Schur decompositions


Bujanović, Zvonimir; Kressner, Daniel; Schröder, Christian
Iterative Refinement of Schur decompositions // Numerical algorithms, 92 (2022), 247-267 doi:10.1007/s11075-022-01327-6 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1196442 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Iterative Refinement of Schur decompositions

Autori
Bujanović, Zvonimir ; Kressner, Daniel ; Schröder, Christian

Izvornik
Numerical algorithms (1017-1398) 92 (2022); 247-267

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Schur decomposition ; iterative refinement ; mixed precision ; eigenvalue computation

Sažetak
The Schur decomposition of a square matrix A is an important intermediate step of state-of-the-art numerical algorithms for addressing eigenvalue problems, matrix functions, and matrix equations. This work is concerned with the following task: Compute a (more) accurate Schur decomposition of A from a given approximate Schur decomposition. This task arises, for example, in the context of parameter-dependent eigenvalue problems and mixed precision computations. We have developed a Newton-like algorithm that requires the solution of a triangular matrix equation and an approximate orthogonalization step in every iteration. We prove local quadratic convergence for matrices with mutually distinct eigenvalues and observe fast convergence in practice. In a mixed low-high precision environment, our algorithm essentially reduces to only four high-precision matrix-matrix multiplications per iteration. When refining double to quadruple precision, it often needs only 3-4 iterations, which reduces the time of computing a quadruple precision Schur decomposition by up to a factor of 10-20.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
HRZZ-IP-2019-04-6268 - Stohastičke aproksimacije malog ranga i primjene na parametarski ovisne probleme (RandLRAP) (Grubišić, Luka, HRZZ - 2019-04) ( CroRIS)

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Daniel Kressner (autor)

Avatar Url Zvonimir Bujanović (autor)

Poveznice na cjeloviti tekst rada:

doi link.springer.com

Citiraj ovu publikaciju:

Bujanović, Zvonimir; Kressner, Daniel; Schröder, Christian
Iterative Refinement of Schur decompositions // Numerical algorithms, 92 (2022), 247-267 doi:10.1007/s11075-022-01327-6 (međunarodna recenzija, članak, znanstveni)
Bujanović, Z., Kressner, D. & Schröder, C. (2022) Iterative Refinement of Schur decompositions. Numerical algorithms, 92, 247-267 doi:10.1007/s11075-022-01327-6.
@article{article, author = {Bujanovi\'{c}, Zvonimir and Kressner, Daniel and Schr\"{o}der, Christian}, year = {2022}, pages = {247-267}, DOI = {10.1007/s11075-022-01327-6}, keywords = {Schur decomposition, iterative refinement, mixed precision, eigenvalue computation}, journal = {Numerical algorithms}, doi = {10.1007/s11075-022-01327-6}, volume = {92}, issn = {1017-1398}, title = {Iterative Refinement of Schur decompositions}, keyword = {Schur decomposition, iterative refinement, mixed precision, eigenvalue computation} }
@article{article, author = {Bujanovi\'{c}, Zvonimir and Kressner, Daniel and Schr\"{o}der, Christian}, year = {2022}, pages = {247-267}, DOI = {10.1007/s11075-022-01327-6}, keywords = {Schur decomposition, iterative refinement, mixed precision, eigenvalue computation}, journal = {Numerical algorithms}, doi = {10.1007/s11075-022-01327-6}, volume = {92}, issn = {1017-1398}, title = {Iterative Refinement of Schur decompositions}, keyword = {Schur decomposition, iterative refinement, mixed precision, eigenvalue computation} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font