Pregled bibliografske jedinice broj: 1196431
Approximate inverse systems which admit meshes
Approximate inverse systems which admit meshes // Topology and its applications, 59 (1994), 2; 179-188 doi:10.1016/0166-8641(94)90093-0 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1196431 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Approximate inverse systems which admit meshes
Autori
Mardešić, Sibe ; Uglešić, Nikica
Izvornik
Topology and its applications (0166-8641) 59
(1994), 2;
179-188
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Inverse system ; Approximate inverse system ; Inverse limit ; Resolution ; Approximate resolution
Sažetak
Recently, approximate inverse systems of spaces and their limits have been defined. These systems differ from usual inverse systems in that the bonding maps paa′ are not subject to the commutativity requirement paa′pa′a″ = paa″, a⩽a″⩽a″. Instead, the mappings paa′pa′a″ and paa″ are allowed to differ up to a given normal covering a of Xa, called the mesh at aϵA. Imposing three conditions (A1)–(A3), one obtains a theory of gauged approximate systems, which has certain advantages over the usual theory of inverse systems. While conditions (A1) and (A3) depend on the meshes, (A2) does not. M.G. Charalambous initiated the study of approximate systems which satisfy only condition (A2) and therefore, makes no use of the meshes. The study of such systems was further pursued by the authors and by Vlasta Matijević. The present paper is devoted to the question, when does a system satisfying only condition (A2) admit meshes, which makes it a gauged system? A sufficient condition is found, which in some important cases becomes also a necessary condition.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb,
Prirodoslovno-matematički fakultet, Split
Citiraj ovu publikaciju:
Časopis indeksira:
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet
- Zentrallblatt für Mathematik/Mathematical Abstracts