Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1195273

Lie algebra modules which are locally finite and with finite multiplicities over the semisimple part


Mazorchuk, Volodymyr; Mrđen, Rafael
Lie algebra modules which are locally finite and with finite multiplicities over the semisimple part // Nagoya mathematical journal, 246 (2022), 430-470 doi:10.1017/nmj.2021.8 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1195273 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Lie algebra modules which are locally finite and with finite multiplicities over the semisimple part

Autori
Mazorchuk, Volodymyr ; Mrđen, Rafael

Izvornik
Nagoya mathematical journal (0027-7630) 246 (2022); 430-470

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
g-Harish-Chandra module ; Enright-Arkhipov localization ; Takiff Lie algebra ; Schrödinger Lie algebra

Sažetak
For a finite-dimensional Lie algebra L over C with a fixed Levi decomposition L=g+r where g is semi- simple, we investigate L-modules which decompose, as g-modules, into a direct sum of simple finite- dimensional g-modules with finite multiplicities. We call such modules g-Harish-Chandra modules. We give a complete classification of simple g-Harish- Chandra modules for the Takiff Lie algebra associated to g=sl_2, and for the Schrödinger Lie algebra, and obtain some partial results in other cases. An adapted version of Enright's and Arkhipov's completion functors plays a crucial role in our arguments. Moreover, we calculate the first extension groups of infinite-dimensional simple g- Harish-Chandra modules and their annihilators in the universal enveloping algebra, for the Takiff sl_2 and the Schrödinger Lie algebra. In the general case, we give a sufficient condition for the existence of infinite-dimensional simple g- Harish-Chandra modules.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
--KK.01.1.1.01.0004 - Provedba vrhunskih istraživanja u sklopu Znanstvenog centra izvrsnosti za kvantne i kompleksne sustave te reprezentacije Liejevih algebri (QuantiXLie) (Buljan, Hrvoje; Pandžić, Pavle) ( CroRIS)

Ustanove:
Građevinski fakultet, Zagreb

Profili:

Avatar Url Rafael Mrđen (autor)

Poveznice na cjeloviti tekst rada:

doi arxiv.org www.cambridge.org

Citiraj ovu publikaciju:

Mazorchuk, Volodymyr; Mrđen, Rafael
Lie algebra modules which are locally finite and with finite multiplicities over the semisimple part // Nagoya mathematical journal, 246 (2022), 430-470 doi:10.1017/nmj.2021.8 (međunarodna recenzija, članak, znanstveni)
Mazorchuk, V. & Mrđen, R. (2022) Lie algebra modules which are locally finite and with finite multiplicities over the semisimple part. Nagoya mathematical journal, 246, 430-470 doi:10.1017/nmj.2021.8.
@article{article, author = {Mazorchuk, Volodymyr and Mr\djen, Rafael}, year = {2022}, pages = {430-470}, DOI = {10.1017/nmj.2021.8}, keywords = {g-Harish-Chandra module, Enright-Arkhipov localization, Takiff Lie algebra, Schr\"{o}dinger Lie algebra}, journal = {Nagoya mathematical journal}, doi = {10.1017/nmj.2021.8}, volume = {246}, issn = {0027-7630}, title = {Lie algebra modules which are locally finite and with finite multiplicities over the semisimple part}, keyword = {g-Harish-Chandra module, Enright-Arkhipov localization, Takiff Lie algebra, Schr\"{o}dinger Lie algebra} }
@article{article, author = {Mazorchuk, Volodymyr and Mr\djen, Rafael}, year = {2022}, pages = {430-470}, DOI = {10.1017/nmj.2021.8}, keywords = {g-Harish-Chandra module, Enright-Arkhipov localization, Takiff Lie algebra, Schr\"{o}dinger Lie algebra}, journal = {Nagoya mathematical journal}, doi = {10.1017/nmj.2021.8}, volume = {246}, issn = {0027-7630}, title = {Lie algebra modules which are locally finite and with finite multiplicities over the semisimple part}, keyword = {g-Harish-Chandra module, Enright-Arkhipov localization, Takiff Lie algebra, Schr\"{o}dinger Lie algebra} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font