Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1193853

An Affine Regular Icosahedron Inscribed in an Affine Regular Octahedron in a GS-Quasigroup


Kolar-Begović, Zdenka
An Affine Regular Icosahedron Inscribed in an Affine Regular Octahedron in a GS-Quasigroup // KoG : znanstveno-stručni časopis Hrvatskog društva za konstruktivnu geometriju i kompjutorsku grafiku, 21 (2017), 3-5 doi:10.31896/k.21.8 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1193853 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
An Affine Regular Icosahedron Inscribed in an Affine Regular Octahedron in a GS-Quasigroup

Autori
Kolar-Begović, Zdenka

Izvornik
KoG : znanstveno-stručni časopis Hrvatskog društva za konstruktivnu geometriju i kompjutorsku grafiku (1331-1611) 21 (2017); 3-5

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
GS–quasigroup, GS–trapezoid, affine regular icosahedron, affine regular octahedron

Sažetak
A golden section quasigroup or shortly a GS- quasigroup is an idempotent quasigroup which satisfies the identities $a(ab \cdot c)\cdot c=b$, $a\cdot(a\cdot bc)c=b$. The concept of a GS- quasigroup was introduced by Volenec. A number of geometric concepts can be introduced in a general GS-quasigroup by means of the binary quasigroup operation. In this paper, it is proved that for any affine regular octahedron there is an affine regular icosahedron which is inscribed in the given affine regular octahedron. This is proved by means of the identities and relations which are valid in a general GS-quasigrup. The geometrical presentation in the GS-quasigroup $\mathbb{;C}; (\frac{;1};{;2};(1+\sqrt 5))$ suggests how a geometrical consequence may be derived from the statements proven in a purely algebraic manner.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Ustanove:
Sveučilište u Osijeku, Odjel za matematiku

Profili:

Avatar Url Zdenka Kolar-Begović (autor)

Poveznice na cjeloviti tekst rada:

doi hrcak.srce.hr

Citiraj ovu publikaciju:

Kolar-Begović, Zdenka
An Affine Regular Icosahedron Inscribed in an Affine Regular Octahedron in a GS-Quasigroup // KoG : znanstveno-stručni časopis Hrvatskog društva za konstruktivnu geometriju i kompjutorsku grafiku, 21 (2017), 3-5 doi:10.31896/k.21.8 (međunarodna recenzija, članak, znanstveni)
Kolar-Begović, Z. (2017) An Affine Regular Icosahedron Inscribed in an Affine Regular Octahedron in a GS-Quasigroup. KoG : znanstveno-stručni časopis Hrvatskog društva za konstruktivnu geometriju i kompjutorsku grafiku, 21, 3-5 doi:10.31896/k.21.8.
@article{article, author = {Kolar-Begovi\'{c}, Zdenka}, year = {2017}, pages = {3-5}, DOI = {10.31896/k.21.8}, keywords = {GS–quasigroup, GS–trapezoid, affine regular icosahedron, affine regular octahedron}, journal = {KoG : znanstveno-stru\v{c}ni \v{c}asopis Hrvatskog dru\v{s}tva za konstruktivnu geometriju i kompjutorsku grafiku}, doi = {10.31896/k.21.8}, volume = {21}, issn = {1331-1611}, title = {An Affine Regular Icosahedron Inscribed in an Affine Regular Octahedron in a GS-Quasigroup}, keyword = {GS–quasigroup, GS–trapezoid, affine regular icosahedron, affine regular octahedron} }
@article{article, author = {Kolar-Begovi\'{c}, Zdenka}, year = {2017}, pages = {3-5}, DOI = {10.31896/k.21.8}, keywords = {GS–quasigroup, GS–trapezoid, affine regular icosahedron, affine regular octahedron}, journal = {KoG : znanstveno-stru\v{c}ni \v{c}asopis Hrvatskog dru\v{s}tva za konstruktivnu geometriju i kompjutorsku grafiku}, doi = {10.31896/k.21.8}, volume = {21}, issn = {1331-1611}, title = {An Affine Regular Icosahedron Inscribed in an Affine Regular Octahedron in a GS-Quasigroup}, keyword = {GS–quasigroup, GS–trapezoid, affine regular icosahedron, affine regular octahedron} }

Uključenost u ostale bibliografske baze podataka::


  • MathSciNet
  • MRcc


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font