Pregled bibliografske jedinice broj: 1193853
An Affine Regular Icosahedron Inscribed in an Affine Regular Octahedron in a GS-Quasigroup
An Affine Regular Icosahedron Inscribed in an Affine Regular Octahedron in a GS-Quasigroup // KoG : znanstveno-stručni časopis Hrvatskog društva za konstruktivnu geometriju i kompjutorsku grafiku, 21 (2017), 3-5 doi:10.31896/k.21.8 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1193853 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
An Affine Regular Icosahedron Inscribed
in an Affine Regular Octahedron in a GS-Quasigroup
Autori
Kolar-Begović, Zdenka
Izvornik
KoG : znanstveno-stručni časopis Hrvatskog društva za konstruktivnu geometriju i kompjutorsku grafiku (1331-1611) 21
(2017);
3-5
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
GS–quasigroup, GS–trapezoid, affine regular icosahedron, affine regular octahedron
Sažetak
A golden section quasigroup or shortly a GS- quasigroup is an idempotent quasigroup which satisfies the identities $a(ab \cdot c)\cdot c=b$, $a\cdot(a\cdot bc)c=b$. The concept of a GS- quasigroup was introduced by Volenec. A number of geometric concepts can be introduced in a general GS-quasigroup by means of the binary quasigroup operation. In this paper, it is proved that for any affine regular octahedron there is an affine regular icosahedron which is inscribed in the given affine regular octahedron. This is proved by means of the identities and relations which are valid in a general GS-quasigrup. The geometrical presentation in the GS-quasigroup $\mathbb{;C}; (\frac{;1};{;2};(1+\sqrt 5))$ suggests how a geometrical consequence may be derived from the statements proven in a purely algebraic manner.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Sveučilište u Osijeku, Odjel za matematiku
Profili:
Zdenka Kolar-Begović
(autor)
Citiraj ovu publikaciju:
Uključenost u ostale bibliografske baze podataka::
- MathSciNet
- MRcc