Pregled bibliografske jedinice broj: 1192527
Deflation for the Symmetric Arrowhead and Diagonal-Plus-Rank-One Eigenvalue Problems
Deflation for the Symmetric Arrowhead and Diagonal-Plus-Rank-One Eigenvalue Problems // SIAM Journal on Matrix Analysis and Applications, 43 (2022), 2; 681-709 doi:10.1137/21M139205X (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1192527 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Deflation for the Symmetric Arrowhead and Diagonal-Plus-Rank-One Eigenvalue Problems
Autori
Barlow, Jesse L. ; Eisenstat, Stanley C. ; Jakovčević Stor, Nevena ; Slapničar, Ivan
Izvornik
SIAM Journal on Matrix Analysis and Applications (0895-4798) 43
(2022), 2;
681-709
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
symmetric arrow matrix ; diagonal-plus-rank-one matrix ; eigenvalue deflation ; Krylov-Schur ; symmetric Lanczos algorithm
Sažetak
We discuss the eigenproblem for the symmetric arrowhead matrix $C = (\begin{;smallmatrix}; D \& {;z}; {;z};^T & \alpha \end{;smallmatrix};)$, where $D \in \mathbb{;R};^{;n \times n};$ is diagonal, ${;z}; \in \mathbb{;R};^n$, and $\alpha \in \mathbb{;R};$, in order to examine criteria for when components of ${;z};$ may be set to zero. We show that whenever two eigenvalues of $C$ are sufficiently close, some component of ${;z};$ may be deflated to zero, without significantly perturbing the eigenvalues of $C$, by either substituting zero for that component or performing a Givens rotation on each side of $C$. The strategy for this deflation requires ${;\mathcal{;O};(n^2)};$ comparisons. Although it is too costly for many applications, when we use it as a benchmark, we can analyze the effectiveness of ${;{;O};(n)};$ heuristics that are more practical approaches to deflation. We show that one such ${;\mathcal{;O};(n)};$ heuristic finds all sets of three or more nearby eigenvalues, misses sets of two or more nearby eigenvalues under limited circumstances, and produces a reduced matrix whose eigenvalues are distinct in double the working precision. Using the ${;\mathcal{;O};(n)};$ heuristic, we develop a more aggressive method for finding converged eigenvalues in the symmetric Lanczos algorithm. It is shown that except for pathological exceptions, the ${;\mathcal{;O};(n)};$ heuristic finds nearly as much deflation as the ${;\mathcal{;O};(n^2)};$ algorithm that reduces an arrowhead matrix to one that cannot be deflated further. The deflation algorithms and their analysis are extended to the symmetric diagonal-plus-rank-one eigenvalue problem and lead to a better deflation strategy for the LAPACK routine dstedc.f.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2020-02-2240 - Matrični algoritmi u nekomutativnim asocijativnim algebrama (MANAA) (Slapničar, Ivan, HRZZ - 2020-02) ( CroRIS)
Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus