Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1192527

Deflation for the Symmetric Arrowhead and Diagonal-Plus-Rank-One Eigenvalue Problems


Barlow, Jesse L.; Eisenstat, Stanley C.; Jakovčević Stor, Nevena; Slapničar, Ivan
Deflation for the Symmetric Arrowhead and Diagonal-Plus-Rank-One Eigenvalue Problems // SIAM Journal on Matrix Analysis and Applications, 43 (2022), 2; 681-709 doi:10.1137/21M139205X (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1192527 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Deflation for the Symmetric Arrowhead and Diagonal-Plus-Rank-One Eigenvalue Problems

Autori
Barlow, Jesse L. ; Eisenstat, Stanley C. ; Jakovčević Stor, Nevena ; Slapničar, Ivan

Izvornik
SIAM Journal on Matrix Analysis and Applications (0895-4798) 43 (2022), 2; 681-709

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
symmetric arrow matrix ; diagonal-plus-rank-one matrix ; eigenvalue deflation ; Krylov-Schur ; symmetric Lanczos algorithm

Sažetak
We discuss the eigenproblem for the symmetric arrowhead matrix $C = (\begin{;smallmatrix}; D \& {;z}; {;z};^T & \alpha \end{;smallmatrix};)$, where $D \in \mathbb{;R};^{;n \times n};$ is diagonal, ${;z}; \in \mathbb{;R};^n$, and $\alpha \in \mathbb{;R};$, in order to examine criteria for when components of ${;z};$ may be set to zero. We show that whenever two eigenvalues of $C$ are sufficiently close, some component of ${;z};$ may be deflated to zero, without significantly perturbing the eigenvalues of $C$, by either substituting zero for that component or performing a Givens rotation on each side of $C$. The strategy for this deflation requires ${;\mathcal{;O};(n^2)};$ comparisons. Although it is too costly for many applications, when we use it as a benchmark, we can analyze the effectiveness of ${;{;O};(n)};$ heuristics that are more practical approaches to deflation. We show that one such ${;\mathcal{;O};(n)};$ heuristic finds all sets of three or more nearby eigenvalues, misses sets of two or more nearby eigenvalues under limited circumstances, and produces a reduced matrix whose eigenvalues are distinct in double the working precision. Using the ${;\mathcal{;O};(n)};$ heuristic, we develop a more aggressive method for finding converged eigenvalues in the symmetric Lanczos algorithm. It is shown that except for pathological exceptions, the ${;\mathcal{;O};(n)};$ heuristic finds nearly as much deflation as the ${;\mathcal{;O};(n^2)};$ algorithm that reduces an arrowhead matrix to one that cannot be deflated further. The deflation algorithms and their analysis are extended to the symmetric diagonal-plus-rank-one eigenvalue problem and lead to a better deflation strategy for the LAPACK routine dstedc.f.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
HRZZ-IP-2020-02-2240 - Matrični algoritmi u nekomutativnim asocijativnim algebrama (MANAA) (Slapničar, Ivan, HRZZ - 2020-02) ( CroRIS)

Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split

Poveznice na cjeloviti tekst rada:

doi epubs.siam.org

Citiraj ovu publikaciju:

Barlow, Jesse L.; Eisenstat, Stanley C.; Jakovčević Stor, Nevena; Slapničar, Ivan
Deflation for the Symmetric Arrowhead and Diagonal-Plus-Rank-One Eigenvalue Problems // SIAM Journal on Matrix Analysis and Applications, 43 (2022), 2; 681-709 doi:10.1137/21M139205X (međunarodna recenzija, članak, znanstveni)
Barlow, J., Eisenstat, S., Jakovčević Stor, N. & Slapničar, I. (2022) Deflation for the Symmetric Arrowhead and Diagonal-Plus-Rank-One Eigenvalue Problems. SIAM Journal on Matrix Analysis and Applications, 43 (2), 681-709 doi:10.1137/21M139205X.
@article{article, author = {Barlow, Jesse L. and Eisenstat, Stanley C. and Jakov\v{c}evi\'{c} Stor, Nevena and Slapni\v{c}ar, Ivan}, year = {2022}, pages = {681-709}, DOI = {10.1137/21M139205X}, keywords = {symmetric arrow matrix, diagonal-plus-rank-one matrix, eigenvalue deflation, Krylov-Schur, symmetric Lanczos algorithm}, journal = {SIAM Journal on Matrix Analysis and Applications}, doi = {10.1137/21M139205X}, volume = {43}, number = {2}, issn = {0895-4798}, title = {Deflation for the Symmetric Arrowhead and Diagonal-Plus-Rank-One Eigenvalue Problems}, keyword = {symmetric arrow matrix, diagonal-plus-rank-one matrix, eigenvalue deflation, Krylov-Schur, symmetric Lanczos algorithm} }
@article{article, author = {Barlow, Jesse L. and Eisenstat, Stanley C. and Jakov\v{c}evi\'{c} Stor, Nevena and Slapni\v{c}ar, Ivan}, year = {2022}, pages = {681-709}, DOI = {10.1137/21M139205X}, keywords = {symmetric arrow matrix, diagonal-plus-rank-one matrix, eigenvalue deflation, Krylov-Schur, symmetric Lanczos algorithm}, journal = {SIAM Journal on Matrix Analysis and Applications}, doi = {10.1137/21M139205X}, volume = {43}, number = {2}, issn = {0895-4798}, title = {Deflation for the Symmetric Arrowhead and Diagonal-Plus-Rank-One Eigenvalue Problems}, keyword = {symmetric arrow matrix, diagonal-plus-rank-one matrix, eigenvalue deflation, Krylov-Schur, symmetric Lanczos algorithm} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font