Pregled bibliografske jedinice broj: 1191930
Survey of the dataset meta-features
Survey of the dataset meta-features // 85 th International Scientific Conference on Economic and Social Development, Book of Proceedings / Pinto da Costa, Maria E. ; do Rosario Anjos, Maria ; Roska Vlasta (ur.).
Porto, 2022. str. 9-16 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1191930 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Survey of the dataset meta-features
Autori
Oreški, Dijana ; Kadoić, Nikola
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
85 th International Scientific Conference on Economic and Social Development, Book of Proceedings
/ Pinto da Costa, Maria E. ; do Rosario Anjos, Maria ; Roska Vlasta - Porto, 2022, 9-16
Skup
Economic and social development : 85th International Scientific Conference on Economic and Social Development
Mjesto i datum
Porto, Portugal, 21.07.2022. - 22.07.2022
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Meta-learning, meta-features, dataset characteristics, machine learning
Sažetak
Machine learning is an active area of research and has seen the development of many algorithms. Machine learning practitioners at different levels frequently face a similar problem: What algorithm best suits their data? Recent meta-learning research automates this procedure using a meta- classifier to predict the best algorithm for a given dataset. Meta-features are used to describe the properties and characteristics of datasets and construct the feature space for meta-learning. In this paper, we performed a literature survey to recognize meta-features that should be taken into account when providing meta-learning research and identify directions for further research in this area.
Izvorni jezik
Engleski
Znanstvena područja
Informacijske i komunikacijske znanosti
POVEZANOST RADA
Projekti:
HRZZ-UIP-2020-02-6312 - SIMON: Inteligentni sustav za automatsku selekciju algoritama strojnog učenja u društvenim znanostima (SIMON) (Oreški, Dijana, HRZZ - 2020-02) ( CroRIS)
Ustanove:
Fakultet organizacije i informatike, Varaždin
Citiraj ovu publikaciju:
Časopis indeksira:
- HeinOnline