Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1191929

Discretization of numerical meta-features into categorical: analysis of educational and business data sets


Oreški, Dijana; Višnjić, Dunja; Kadoić, Nikola
Discretization of numerical meta-features into categorical: analysis of educational and business data sets // Proceedings of MIPRO 2022 / Skala, Karolj (ur.).
Opatija: Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2022. str. 1336-1341 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1191929 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Discretization of numerical meta-features into categorical: analysis of educational and business data sets

Autori
Oreški, Dijana ; Višnjić, Dunja ; Kadoić, Nikola

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of MIPRO 2022 / Skala, Karolj - Opatija : Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2022, 1336-1341

Skup
45th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO 2022)

Mjesto i datum
Opatija, Hrvatska, 23.05.2022. - 27.05.2022

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
meta-learning ; meta-features ; educational data ; business data ; data mining

Sažetak
Meta-learning is learning from previous experience gained while applying learning algorithms to different data. Meta-learning consists of three steps: (i) establishing meta-features, (ii) performing learning, and (iii) prediction. This paper focuses on the first step, meta-features. Meta-features are a mix of numerical and categorical variables. We build upon the idea that learning from numerical meta-features is often less effective and less efficient than learning from categorical meta-features. Thus, the objective of this study is to discretize numerical meta-features into categorical values. An overview of meta-features is given in the paper, along with a taxonomy of discretization methods. In addition, a survey of significant discretization methods is provided. Then, discretization is performed on 58 datasets selected from two domains of social sciences: educational and business domains. Research results are discussed, and contributions for meta-learning process improvement are provided.

Izvorni jezik
Engleski

Znanstvena područja
Informacijske i komunikacijske znanosti



POVEZANOST RADA


Projekti:
HRZZ-UIP-2020-02-6312 - SIMON: Inteligentni sustav za automatsku selekciju algoritama strojnog učenja u društvenim znanostima (SIMON) (Oreški, Dijana, HRZZ - 2020-02) ( CroRIS)

Ustanove:
Fakultet organizacije i informatike, Varaždin

Profili:

Avatar Url Nikola Kadoić (autor)

Avatar Url Dunja Višnjić (autor)

Avatar Url Dijana Oreški (autor)


Citiraj ovu publikaciju:

Oreški, Dijana; Višnjić, Dunja; Kadoić, Nikola
Discretization of numerical meta-features into categorical: analysis of educational and business data sets // Proceedings of MIPRO 2022 / Skala, Karolj (ur.).
Opatija: Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2022. str. 1336-1341 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Oreški, D., Višnjić, D. & Kadoić, N. (2022) Discretization of numerical meta-features into categorical: analysis of educational and business data sets. U: Skala, K. (ur.)Proceedings of MIPRO 2022.
@article{article, author = {Ore\v{s}ki, Dijana and Vi\v{s}nji\'{c}, Dunja and Kadoi\'{c}, Nikola}, editor = {Skala, K.}, year = {2022}, pages = {1336-1341}, keywords = {meta-learning, meta-features, educational data, business data, data mining}, title = {Discretization of numerical meta-features into categorical: analysis of educational and business data sets}, keyword = {meta-learning, meta-features, educational data, business data, data mining}, publisher = {Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO}, publisherplace = {Opatija, Hrvatska} }
@article{article, author = {Ore\v{s}ki, Dijana and Vi\v{s}nji\'{c}, Dunja and Kadoi\'{c}, Nikola}, editor = {Skala, K.}, year = {2022}, pages = {1336-1341}, keywords = {meta-learning, meta-features, educational data, business data, data mining}, title = {Discretization of numerical meta-features into categorical: analysis of educational and business data sets}, keyword = {meta-learning, meta-features, educational data, business data, data mining}, publisher = {Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO}, publisherplace = {Opatija, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font