Pregled bibliografske jedinice broj: 1191929
Discretization of numerical meta-features into categorical: analysis of educational and business data sets
Discretization of numerical meta-features into categorical: analysis of educational and business data sets // Proceedings of MIPRO 2022 / Skala, Karolj (ur.).
Opatija: Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2022. str. 1336-1341 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1191929 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Discretization of numerical meta-features into
categorical: analysis of educational and business
data sets
Autori
Oreški, Dijana ; Višnjić, Dunja ; Kadoić, Nikola
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of MIPRO 2022
/ Skala, Karolj - Opatija : Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2022, 1336-1341
Skup
45th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO 2022)
Mjesto i datum
Opatija, Hrvatska, 23.05.2022. - 27.05.2022
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
meta-learning ; meta-features ; educational data ; business data ; data mining
Sažetak
Meta-learning is learning from previous experience gained while applying learning algorithms to different data. Meta-learning consists of three steps: (i) establishing meta-features, (ii) performing learning, and (iii) prediction. This paper focuses on the first step, meta-features. Meta-features are a mix of numerical and categorical variables. We build upon the idea that learning from numerical meta-features is often less effective and less efficient than learning from categorical meta-features. Thus, the objective of this study is to discretize numerical meta-features into categorical values. An overview of meta-features is given in the paper, along with a taxonomy of discretization methods. In addition, a survey of significant discretization methods is provided. Then, discretization is performed on 58 datasets selected from two domains of social sciences: educational and business domains. Research results are discussed, and contributions for meta-learning process improvement are provided.
Izvorni jezik
Engleski
Znanstvena područja
Informacijske i komunikacijske znanosti
POVEZANOST RADA
Projekti:
HRZZ-UIP-2020-02-6312 - SIMON: Inteligentni sustav za automatsku selekciju algoritama strojnog učenja u društvenim znanostima (SIMON) (Oreški, Dijana, HRZZ - 2020-02) ( CroRIS)
Ustanove:
Fakultet organizacije i informatike, Varaždin