Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1191921

Machine Learning Based Model for Predicting Student Outcomes


Oreški, Dijana; Zamuda, Dora
Machine Learning Based Model for Predicting Student Outcomes // Proceedings of the International Conference on Industrial Engineering and Operations Management
Istanbul, 2022. str. 4884-4894 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1191921 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Machine Learning Based Model for Predicting Student Outcomes

Autori
Oreški, Dijana ; Zamuda, Dora

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the International Conference on Industrial Engineering and Operations Management / - Istanbul, 2022, 4884-4894

Skup
12th International Conference on Industrial Engineering and Operations Management (IEOM 2022)

Mjesto i datum
Istanbul, Turska, 07.03.2022. - 10.03.2022

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Machine Learning ; Decision Tree ; CRISP DM ; Academic Performance.

Sažetak
Machine learning provides various algorithms for application in different domains. In the educational field, huge volume of students’ data is generated and machine learning algorithms serve as valuable tool for pattern identification in students’ behavior. In this paper, CRISP DM standard for data mining is applied in the research with decision tree algorithm used for modelling on Croatian dataset to develop predictive models for students’ outcomes prediction. Data set consisted of 264 students of largest Croatian university collected by online survey. The results prove that decision tree modelling achieves superior results in terms of high accuracy and reliability together with interpretability of tree structure and obtained rules in prediction of students’ academic performance. This approach shows promise to be used in student success prediction in the universities in an automatic manner. Such model can be used to: (i) improve students' learning and develop personalized recommender systems for optimal learning paths, (ii) emphasize to professors most important determinants of students’ academic success (iii) help management of higher education institutions to facilitate the provision of detailed student learning and adjust institutions strategies, (iv) automate adaptation of the course modules and faculty programs.

Izvorni jezik
Engleski

Znanstvena područja
Informacijske i komunikacijske znanosti



POVEZANOST RADA


Projekti:
HRZZ-UIP-2020-02-6312 - SIMON: Inteligentni sustav za automatsku selekciju algoritama strojnog učenja u društvenim znanostima (SIMON) (Oreški, Dijana, HRZZ - 2020-02) ( CroRIS)

Ustanove:
Fakultet organizacije i informatike, Varaždin

Profili:

Avatar Url Dijana Oreški (autor)


Citiraj ovu publikaciju:

Oreški, Dijana; Zamuda, Dora
Machine Learning Based Model for Predicting Student Outcomes // Proceedings of the International Conference on Industrial Engineering and Operations Management
Istanbul, 2022. str. 4884-4894 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Oreški, D. & Zamuda, D. (2022) Machine Learning Based Model for Predicting Student Outcomes. U: Proceedings of the International Conference on Industrial Engineering and Operations Management.
@article{article, author = {Ore\v{s}ki, Dijana and Zamuda, Dora}, year = {2022}, pages = {4884-4894}, keywords = {Machine Learning, Decision Tree, CRISP DM, Academic Performance.}, title = {Machine Learning Based Model for Predicting Student Outcomes}, keyword = {Machine Learning, Decision Tree, CRISP DM, Academic Performance.}, publisherplace = {Istanbul, Turska} }
@article{article, author = {Ore\v{s}ki, Dijana and Zamuda, Dora}, year = {2022}, pages = {4884-4894}, keywords = {Machine Learning, Decision Tree, CRISP DM, Academic Performance.}, title = {Machine Learning Based Model for Predicting Student Outcomes}, keyword = {Machine Learning, Decision Tree, CRISP DM, Academic Performance.}, publisherplace = {Istanbul, Turska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font