Pregled bibliografske jedinice broj: 1191921
Machine Learning Based Model for Predicting Student Outcomes
Machine Learning Based Model for Predicting Student Outcomes // Proceedings of the International Conference on Industrial Engineering and Operations Management
Istanbul, 2022. str. 4884-4894 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1191921 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Machine Learning Based Model for Predicting Student
Outcomes
Autori
Oreški, Dijana ; Zamuda, Dora
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the International Conference on Industrial Engineering and Operations Management
/ - Istanbul, 2022, 4884-4894
Skup
12th International Conference on Industrial Engineering and Operations Management (IEOM 2022)
Mjesto i datum
Istanbul, Turska, 07.03.2022. - 10.03.2022
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Machine Learning ; Decision Tree ; CRISP DM ; Academic Performance.
Sažetak
Machine learning provides various algorithms for application in different domains. In the educational field, huge volume of students’ data is generated and machine learning algorithms serve as valuable tool for pattern identification in students’ behavior. In this paper, CRISP DM standard for data mining is applied in the research with decision tree algorithm used for modelling on Croatian dataset to develop predictive models for students’ outcomes prediction. Data set consisted of 264 students of largest Croatian university collected by online survey. The results prove that decision tree modelling achieves superior results in terms of high accuracy and reliability together with interpretability of tree structure and obtained rules in prediction of students’ academic performance. This approach shows promise to be used in student success prediction in the universities in an automatic manner. Such model can be used to: (i) improve students' learning and develop personalized recommender systems for optimal learning paths, (ii) emphasize to professors most important determinants of students’ academic success (iii) help management of higher education institutions to facilitate the provision of detailed student learning and adjust institutions strategies, (iv) automate adaptation of the course modules and faculty programs.
Izvorni jezik
Engleski
Znanstvena područja
Informacijske i komunikacijske znanosti
POVEZANOST RADA
Projekti:
HRZZ-UIP-2020-02-6312 - SIMON: Inteligentni sustav za automatsku selekciju algoritama strojnog učenja u društvenim znanostima (SIMON) (Oreški, Dijana, HRZZ - 2020-02) ( CroRIS)
Ustanove:
Fakultet organizacije i informatike, Varaždin
Profili:
Dijana Oreški
(autor)