Pregled bibliografske jedinice broj: 1191297
Emotion Recognition Using a Reduced Set of EEG Channels Based on Holographic Feature Maps
Emotion Recognition Using a Reduced Set of EEG Channels Based on Holographic Feature Maps // Sensors, 22 (2022), 9; 3248-3273 doi:10.3390/s22093248 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1191297 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Emotion Recognition Using a Reduced Set of EEG
Channels Based on Holographic Feature Maps
Autori
Topić, Ante ; Russo, Mladen ; Stella, Maja ; Šarić, Matko
Izvornik
Sensors (1424-8220) 22
(2022), 9;
3248-3273
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
electroencephalogram ; Brain-Computer Interface ; ReliefF ; Neighborhood Component Analysis ; deep learning ; computer-generated holography ; gender specific emotion recognition ; valence-arousal-dominance model
Sažetak
An important function of the construction of the Brain-Computer Interface (BCI) device is the development of a model that is able to recognize emotions from electroencephalogram (EEG) signals. Research in this area is very challenging because the EEG signal is non-stationary, non-linear, and contains a lot of noise due to artifacts caused by muscle activity and poor electrode contact. EEG signals are recorded with non-invasive wearable devices using a large number of electrodes, which increase the dimensionality and, thereby, also the computational complexity of EEG data. It also reduces the level of comfort of the subjects. This paper implements our holographic features, investigates electrode selection, and uses the most relevant channels to maximize model accuracy. The ReliefF and Neighborhood Component Analysis (NCA) methods were used to select the optimal electrodes. Verification was performed on four publicly available datasets. Our holographic feature maps were constructed using computer- generated holography (CGH) based on the values of signal characteristics displayed in space. The resulting 2D maps are the input to the Convolutional Neural Network (CNN), which serves as a feature extraction method. This methodology uses a reduced set of electrodes, which are different between men and women, and obtains state-of-the-art results in a three-dimensional emotional space. The experimental results show that the channel selection methods improve emotion recognition rates significantly with an accuracy of 90.76% for valence, 92.92% for arousal, and 92.97% for dominance.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo, Interdisciplinarne tehničke znanosti, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Projekti:
EK-EFRR-KK.01.1.1.07.0079 - VITA – Virtualna Telemedicinska Asistencija (VITA) (Russo, Mladen, EK - Jačanje kapaciteta za istraživanje, razvoj i inovacije, referentni broj poziva KK.01.1.1.07) ( CroRIS)
Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
- MEDLINE