Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1189473

Evaluation of Creep Behavior of Soft Soils by Utilizing Multisensor Data Combined with Machine Learning


Kovačević, Meho Saša; Bačić, Mario; Librić, Lovorka; Gavin, Kenneth
Evaluation of Creep Behavior of Soft Soils by Utilizing Multisensor Data Combined with Machine Learning // Sensors, 22 (2022), 8; 2888, 21 doi:10.3390/s22082888 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1189473 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Evaluation of Creep Behavior of Soft Soils by Utilizing Multisensor Data Combined with Machine Learning

Autori
Kovačević, Meho Saša ; Bačić, Mario ; Librić, Lovorka ; Gavin, Kenneth

Izvornik
Sensors (1424-8220) 22 (2022), 8; 2888, 21

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
soft soil creep ; Burger’s model ; neural network ; particle swarm optimization ; remote sensing ; non-destructive testing

Sažetak
To identify the unknown values of the parameters of Burger’s constitutive law, commonly used for the evaluation of the creep behavior of the soft soils, this paper demonstrates a procedure relying on the data obtained from multiple sensors, where each sensor is used to its best advantage. The geophysical, geotechnical, and unmanned aerial vehicle data are used for the development of a numerical model whose results feed into the custom-architecture neural network, which then provides information about on the complex relationships between the creep characteristics and soil displacements. By utilizing InSAR and GPS monitoring data, particle swarm algorithm identifies the most probable set of Burger’s creep parameters, eventually providing a reliable estimation of the long-term behavior of soft soils. The validation of methodology is conducted for the Oostmolendijk embankment in the Netherlands, constructed on the soft clay and peat layers. The validation results show that the application of the proposed methodology, which relies on multisensor data, can overcome the high cost and long duration issues of laboratory tests for the determination of the creep parameters and can provide reliable estimates of the long-term behavior of geotechnical structures constructed on soft soils.

Izvorni jezik
Engleski



POVEZANOST RADA


Ustanove:
Građevinski fakultet, Zagreb

Poveznice na cjeloviti tekst rada:

doi www.mdpi.com

Citiraj ovu publikaciju:

Kovačević, Meho Saša; Bačić, Mario; Librić, Lovorka; Gavin, Kenneth
Evaluation of Creep Behavior of Soft Soils by Utilizing Multisensor Data Combined with Machine Learning // Sensors, 22 (2022), 8; 2888, 21 doi:10.3390/s22082888 (međunarodna recenzija, članak, znanstveni)
Kovačević, M., Bačić, M., Librić, L. & Gavin, K. (2022) Evaluation of Creep Behavior of Soft Soils by Utilizing Multisensor Data Combined with Machine Learning. Sensors, 22 (8), 2888, 21 doi:10.3390/s22082888.
@article{article, author = {Kova\v{c}evi\'{c}, Meho Sa\v{s}a and Ba\v{c}i\'{c}, Mario and Libri\'{c}, Lovorka and Gavin, Kenneth}, year = {2022}, pages = {21}, DOI = {10.3390/s22082888}, chapter = {2888}, keywords = {soft soil creep, Burger’s model, neural network, particle swarm optimization, remote sensing, non-destructive testing}, journal = {Sensors}, doi = {10.3390/s22082888}, volume = {22}, number = {8}, issn = {1424-8220}, title = {Evaluation of Creep Behavior of Soft Soils by Utilizing Multisensor Data Combined with Machine Learning}, keyword = {soft soil creep, Burger’s model, neural network, particle swarm optimization, remote sensing, non-destructive testing}, chapternumber = {2888} }
@article{article, author = {Kova\v{c}evi\'{c}, Meho Sa\v{s}a and Ba\v{c}i\'{c}, Mario and Libri\'{c}, Lovorka and Gavin, Kenneth}, year = {2022}, pages = {21}, DOI = {10.3390/s22082888}, chapter = {2888}, keywords = {soft soil creep, Burger’s model, neural network, particle swarm optimization, remote sensing, non-destructive testing}, journal = {Sensors}, doi = {10.3390/s22082888}, volume = {22}, number = {8}, issn = {1424-8220}, title = {Evaluation of Creep Behavior of Soft Soils by Utilizing Multisensor Data Combined with Machine Learning}, keyword = {soft soil creep, Burger’s model, neural network, particle swarm optimization, remote sensing, non-destructive testing}, chapternumber = {2888} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font