Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1189380

Carbon nanotube stress-strain behavior prediction using convolutional neural networks


Košmerl, Valentina; Štajduhar, Ivan; Čanađija, Marko
Carbon nanotube stress-strain behavior prediction using convolutional neural networks // 33rd Nordic Seminar on Computational Mechanics
Jönköping, Švedska, 2021. str. 12-13 (predavanje, međunarodna recenzija, sažetak, znanstveni)


CROSBI ID: 1189380 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Carbon nanotube stress-strain behavior prediction using convolutional neural networks

Autori
Košmerl, Valentina ; Štajduhar, Ivan ; Čanađija, Marko

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Skup
33rd Nordic Seminar on Computational Mechanics

Mjesto i datum
Jönköping, Švedska, 25.11.2021. - 26.11.2021

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Single-walled carbon nanotubes, machine learning, deep learning, molecular dynamics

Sažetak
Carbon nanotubes have the potential to unlock new design possibilities and technologies. However, the computational cost of molecular dynamics simulations can be a significant barrier to determining the unique properties of various carbon nanotube structures. To obtain the most reliable and comprehensive evaluation of the mechanical properties, we predicted stress-strain curves for all single-walled carbon nanotube configurations with diameters of up to 4 nm using artificial neural networks. For the dataset obtained by molecular dynamics, two models are investigated - a multilayer perceptron and a convolutional neural network - and their performance compared. The results show that the convolutional neural network model converges faster, with a lower error. The impact of various input feature combinations on prediction quality is investigated. Interestingly, the diameter alone is a key feature for accurate prediction of thermal fluctuations. Additionally, the effect of the dataset size on prediction quality is analysed. It is shown that half of the total dataset is sufficiently representative of the problem, having a mean squared error below 1e-4 on the test set.

Izvorni jezik
Engleski

Znanstvena područja
Interdisciplinarne prirodne znanosti, Interdisciplinarne tehničke znanosti



POVEZANOST RADA


Projekti:
HRZZ-IP-2019-04-4703 - Nelokalni mehanički modeli nanogreda (nonNano) (Čanađija, Marko, HRZZ - 2019-04) ( CroRIS)

Ustanove:
Tehnički fakultet, Rijeka,
Sveučilište u Rijeci


Citiraj ovu publikaciju:

Košmerl, Valentina; Štajduhar, Ivan; Čanađija, Marko
Carbon nanotube stress-strain behavior prediction using convolutional neural networks // 33rd Nordic Seminar on Computational Mechanics
Jönköping, Švedska, 2021. str. 12-13 (predavanje, međunarodna recenzija, sažetak, znanstveni)
Košmerl, V., Štajduhar, I. & Čanađija, M. (2021) Carbon nanotube stress-strain behavior prediction using convolutional neural networks. U: 33rd Nordic Seminar on Computational Mechanics.
@article{article, author = {Ko\v{s}merl, Valentina and \v{S}tajduhar, Ivan and \v{C}ana\djija, Marko}, year = {2021}, pages = {12-13}, keywords = {Single-walled carbon nanotubes, machine learning, deep learning, molecular dynamics}, title = {Carbon nanotube stress-strain behavior prediction using convolutional neural networks}, keyword = {Single-walled carbon nanotubes, machine learning, deep learning, molecular dynamics}, publisherplace = {J\"{o}nk\"{o}ping, \v{S}vedska} }
@article{article, author = {Ko\v{s}merl, Valentina and \v{S}tajduhar, Ivan and \v{C}ana\djija, Marko}, year = {2021}, pages = {12-13}, keywords = {Single-walled carbon nanotubes, machine learning, deep learning, molecular dynamics}, title = {Carbon nanotube stress-strain behavior prediction using convolutional neural networks}, keyword = {Single-walled carbon nanotubes, machine learning, deep learning, molecular dynamics}, publisherplace = {J\"{o}nk\"{o}ping, \v{S}vedska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font