Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1188461

A Machine Learning Framework for Multi-Hazard Risk Assessment at the Regional Scale in Earthquake and Flood-Prone Areas


Rocchi, Alessandro; Chiozzi, Andrea; Nale, Marco; Nikolic, Zeljana; Riguzzi, Fabrizio; Mantovan, Luana; Gilli, Alessandro; Benvenuti, Elena
A Machine Learning Framework for Multi-Hazard Risk Assessment at the Regional Scale in Earthquake and Flood-Prone Areas // Applied Sciences-Basel, 12 (2022), 2; 583, 17 doi:10.3390/app12020583 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1188461 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
A Machine Learning Framework for Multi-Hazard Risk Assessment at the Regional Scale in Earthquake and Flood-Prone Areas

Autori
Rocchi, Alessandro ; Chiozzi, Andrea ; Nale, Marco ; Nikolic, Zeljana ; Riguzzi, Fabrizio ; Mantovan, Luana ; Gilli, Alessandro ; Benvenuti, Elena

Izvornik
Applied Sciences-Basel (2076-3417) 12 (2022), 2; 583, 17

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Risk assessment ; Multi hazard ; Seismic risk ; Hydraulic risk ; Machine learning ; Principal component analysis

Sažetak
Communities are confronted with the rapidly growing impact of disasters, due to many factors that cause an increase in the vulnerability of society combined with an increase in hazardous events such as earthquakes and floods. The possible impacts of such events are large, also in developed countries, and governments and stakeholders must adopt risk reduction strategies at different levels of management stages of the communities. This study is aimed at proposing a sound qualitative multi-hazard risk analysis methodology for the assessment of combined seismic and hydraulic risk at the regional scale, which can assist governments and stakeholders in decision making and prioritization of interventions. The method is based on the use of machine learning techniques to aggregate large datasets made of many variables different in nature each of which carries information related to specific risk components and clusterize observations. The framework is applied to the case study of the Emilia Romagna region, for which the different municipalities are grouped into four homogeneous clusters ranked in terms of relative levels of combined risk. The proposed approach proves to be robust and delivers a very useful tool for hazard management and disaster mitigation, particularly for multi-hazard modeling at the regional scale.

Izvorni jezik
Engleski

Znanstvena područja
Građevinarstvo, Temeljne tehničke znanosti, Interdisciplinarne tehničke znanosti



POVEZANOST RADA


Projekti:
EK-INTERREG_V-A_IT-HR_2014-2020-10046122 - Sprječavanje, upravljanje i prevladavanje rizika od prirodnih katastrofa (PMO-GATE) radi ublažavanja njihova utjecaja na gospodarstvo i društvo (PMO-GATE) (Nikolić, Željana, EK - Interreg V-A 2014 – 2020 , Italy – Croatia CBC Programme) ( CroRIS)

Ustanove:
Fakultet građevinarstva, arhitekture i geodezije, Split

Profili:

Avatar Url Željana Nikolić (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada doi www.mdpi.com

Citiraj ovu publikaciju:

Rocchi, Alessandro; Chiozzi, Andrea; Nale, Marco; Nikolic, Zeljana; Riguzzi, Fabrizio; Mantovan, Luana; Gilli, Alessandro; Benvenuti, Elena
A Machine Learning Framework for Multi-Hazard Risk Assessment at the Regional Scale in Earthquake and Flood-Prone Areas // Applied Sciences-Basel, 12 (2022), 2; 583, 17 doi:10.3390/app12020583 (međunarodna recenzija, članak, znanstveni)
Rocchi, A., Chiozzi, A., Nale, M., Nikolic, Z., Riguzzi, F., Mantovan, L., Gilli, A. & Benvenuti, E. (2022) A Machine Learning Framework for Multi-Hazard Risk Assessment at the Regional Scale in Earthquake and Flood-Prone Areas. Applied Sciences-Basel, 12 (2), 583, 17 doi:10.3390/app12020583.
@article{article, author = {Rocchi, Alessandro and Chiozzi, Andrea and Nale, Marco and Nikolic, Zeljana and Riguzzi, Fabrizio and Mantovan, Luana and Gilli, Alessandro and Benvenuti, Elena}, year = {2022}, pages = {17}, DOI = {10.3390/app12020583}, chapter = {583}, keywords = {Risk assessment, Multi hazard, Seismic risk, Hydraulic risk, Machine learning, Principal component analysis}, journal = {Applied Sciences-Basel}, doi = {10.3390/app12020583}, volume = {12}, number = {2}, issn = {2076-3417}, title = {A Machine Learning Framework for Multi-Hazard Risk Assessment at the Regional Scale in Earthquake and Flood-Prone Areas}, keyword = {Risk assessment, Multi hazard, Seismic risk, Hydraulic risk, Machine learning, Principal component analysis}, chapternumber = {583} }
@article{article, author = {Rocchi, Alessandro and Chiozzi, Andrea and Nale, Marco and Nikolic, Zeljana and Riguzzi, Fabrizio and Mantovan, Luana and Gilli, Alessandro and Benvenuti, Elena}, year = {2022}, pages = {17}, DOI = {10.3390/app12020583}, chapter = {583}, keywords = {Risk assessment, Multi hazard, Seismic risk, Hydraulic risk, Machine learning, Principal component analysis}, journal = {Applied Sciences-Basel}, doi = {10.3390/app12020583}, volume = {12}, number = {2}, issn = {2076-3417}, title = {A Machine Learning Framework for Multi-Hazard Risk Assessment at the Regional Scale in Earthquake and Flood-Prone Areas}, keyword = {Risk assessment, Multi hazard, Seismic risk, Hydraulic risk, Machine learning, Principal component analysis}, chapternumber = {583} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font