Pregled bibliografske jedinice broj: 1188246
Dynamics Modeling of Industrial Robotic Manipulators: A Machine Learning Approach Based on Synthetic Data
Dynamics Modeling of Industrial Robotic Manipulators: A Machine Learning Approach Based on Synthetic Data // Mathematics, 10 (2022), 7; 1-17 doi:10.3390/math10071174 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1188246 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Dynamics Modeling of Industrial Robotic
Manipulators: A Machine Learning Approach Based on
Synthetic Data
Autori
Baressi Šegota, Sandi ; Anđelić, Nikola ; Šercer, Mario ; Meštrić, Hrvoje
Izvornik
Mathematics (2227-7390) 10
(2022), 7;
1-17
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
dinamika industrijskih robota ; strojno učenje ; sintetičko generiranje dataseta
(industrial robot dynamics ; machine learning ; synthetic dataset generation)
Sažetak
Obtaining a dynamic model of the robotic manipulator is a complex task. With the growing application of machine learning (ML) approaches in modern robotics, a question arises of using ML for dynamic modeling. Still, due to the large amounts of data necessary for this approach, data collection may be time and resource-intensive. For this reason, this paper aims to research the possibility of synthetic dataset creation by using pre-existing dynamic models to test the possibilities of both applications of such synthetic datasets, as well as modeling the dynamics of an industrial manipulator using ML. Authors generate the dataset consisting of 20, 000 data points and train seven separate multilayer perceptron (MLP) artificial neural networks (ANN)— one for each joint of the manipulator and one for the total torque—using randomized search (RS) for hyperparameter tuning. Additional MLP is trained for the total torsion of the entire manipulator using the same approach. Each model is evaluated using the coefficient of determination (R2) and mean absolute percentage error (MAPE), with 10- fold cross-validation applied. With these settings, all individual joint torque models achieved R2 scores higher than 0.9, with the models for first four joints achieving scores above 0.95. Furthermore, all models for all individual joints achieve MAPE lower than 2%. The model for the total torque of all joints of the robotic manipulator achieves weaker regression scores, with the R2 score of 0.89 and MAPE slightly higher than 2%. The results show that the torsion models of each individual joint, and of the entire manipulator, can be regressed using the described method, with satisfactory accuracy.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo, Strojarstvo
POVEZANOST RADA
Projekti:
--KK.01.2.2.03.0004 - Centar kompetencija za pametne gradove (CEKOM) (Car, Zlatan; Slavić, Nataša; Vilke, Siniša) ( CroRIS)
EK-EFRR-KK.01.1.1.02.0023 - Razvojno-edukacijski centar za metalsku industriju – Metalska jezgra Čakovec (Car, Zlatan, EK - KK.01.1.1.02) ( CroRIS)
NadSve-Sveučilište u Rijeci-uniri-tehnic-18-275-1447 - Razvoj inteligentnog ekspertnog sustava za online diagnostiku raka mokračnog mjehura (Car, Zlatan, NadSve - UNIRI potpore) ( CroRIS)
KK.01.1.1.01.0009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (EK )
Ustanove:
Tehnički fakultet, Rijeka
Profili:
Mario Šercer
(autor)
Nikola Anđelić
(autor)
Sandi Baressi Šegota
(autor)
Hrvoje Meštrić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus