Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1188079

An empirical study of the design choices for local citation recommendation systems


Medić, Zoran; Šnajder, Jan
An empirical study of the design choices for local citation recommendation systems // Expert systems with applications, 200 (2022), 116852, 16 doi:.org/10.1016/j.eswa.2022.116852 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1188079 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
An empirical study of the design choices for local citation recommendation systems

Autori
Medić, Zoran ; Šnajder, Jan

Izvornik
Expert systems with applications (0957-4174) 200 (2022); 116852, 16

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
natural language processing ; citation recommendation ; information retrieval ; BM25 ; SPECTER ; negative sampling

Sažetak
As the number of published research articles grows on a daily basis, it is becoming increasingly difficult for scientists to keep up with the published work. Local citation recommendation (LCR) systems, which produce a list of relevant articles to be cited in a given text passage, could help alleviate the burden on scientists and facilitate research. While research on LCR is gaining popularity, building such systems involves a number of important design choices that are often overlooked. We present an empirical study of the impact of the three design choices in two-stage LCR systems consisting of a prefiltering and a reranking phase. In particular, we investigate (1) the impact of the prefiltering models’ parameters on the model’s performance, as well as the impact of (2) the training regime and (3) negative sampling strategy on the performance of the reranking model. We evaluate various combinations of these parameters on two datasets commonly used for LCR and demonstrate that specific combinations improve the model’s performance over the widely used standard approaches. Specifically, we demonstrate that (1) optimizing prefiltering models’ parameters improves in the range of 3% to 12% in absolute value, (2) using the strict training regime improves both and (up to a maximum of 3.4% and 2.6%, respectively) in all combinations of dataset and prefiltering model, and (3) a careful choice of negative examples can further improve both and (up to a maximum of 11.9% and 8%, respectively) in both datasets used Our results show that the design choices we considered are important and should be given greater consideration when building LCR systems.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Profili:

Avatar Url Zoran Medić (autor)

Avatar Url Jan Šnajder (autor)

Poveznice na cjeloviti tekst rada:

doi

Citiraj ovu publikaciju:

Medić, Zoran; Šnajder, Jan
An empirical study of the design choices for local citation recommendation systems // Expert systems with applications, 200 (2022), 116852, 16 doi:.org/10.1016/j.eswa.2022.116852 (međunarodna recenzija, članak, znanstveni)
Medić, Z. & Šnajder, J. (2022) An empirical study of the design choices for local citation recommendation systems. Expert systems with applications, 200, 116852, 16 doi:.org/10.1016/j.eswa.2022.116852.
@article{article, author = {Medi\'{c}, Zoran and \v{S}najder, Jan}, year = {2022}, pages = {16}, DOI = {doi.org/10.1016/j.eswa.2022.116852}, chapter = {116852}, keywords = {natural language processing, citation recommendation, information retrieval, BM25, SPECTER, negative sampling}, journal = {Expert systems with applications}, doi = {doi.org/10.1016/j.eswa.2022.116852}, volume = {200}, issn = {0957-4174}, title = {An empirical study of the design choices for local citation recommendation systems}, keyword = {natural language processing, citation recommendation, information retrieval, BM25, SPECTER, negative sampling}, chapternumber = {116852} }
@article{article, author = {Medi\'{c}, Zoran and \v{S}najder, Jan}, year = {2022}, pages = {16}, DOI = {doi.org/10.1016/j.eswa.2022.116852}, chapter = {116852}, keywords = {natural language processing, citation recommendation, information retrieval, BM25, SPECTER, negative sampling}, journal = {Expert systems with applications}, doi = {doi.org/10.1016/j.eswa.2022.116852}, volume = {200}, issn = {0957-4174}, title = {An empirical study of the design choices for local citation recommendation systems}, keyword = {natural language processing, citation recommendation, information retrieval, BM25, SPECTER, negative sampling}, chapternumber = {116852} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font