Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1187183

AB-ResUNet+: Improving Multiple Cardiovascular Structure Segmentation from Computed Tomography Angiography Images


Habijan, Marija; Galić, Irena; Romić, Krešimir; Leventić, Hrvoje
AB-ResUNet+: Improving Multiple Cardiovascular Structure Segmentation from Computed Tomography Angiography Images // Applied Sciences, 12 (2022), 6; 3024, 18 doi:10.3390/app12063024 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1187183 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
AB-ResUNet+: Improving Multiple Cardiovascular Structure Segmentation from Computed Tomography Angiography Images

Autori
Habijan, Marija ; Galić, Irena ; Romić, Krešimir ; Leventić, Hrvoje

Izvornik
Applied Sciences (2076-3417) 12 (2022), 6; 3024, 18

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
AB-ResUNet+ ; ASPP ; attention mechanism ; artificial intelligence ; CTA ; cardiovascular segmentation ; deep learning ; residual learning

Sažetak
Accurate segmentation of cardiovascular structures plays an important role in many clinical applications. Recently, fully convolutional networks (FCNs), led by the UNet architecture, have significantly improved the accuracy and speed of semantic segmentation tasks, greatly improving medical segmentation and analysis tasks. The UNet architecture makes heavy use of contextual information. However, useful channel features are not fully exploited. In this work, we present an improved UNet architecture that exploits residual learning, squeeze and excitation operations, Atrous Spatial Pyramid Pooling (ASPP), and the attention mechanism for accurate and effective segmentation of complex cardiovascular structures and name it AB-ResUNet+. The channel attention block is inserted into the skip connection to optimize the coding ability of each layer. The ASPP block is located at the bottom of the network and acts as a bridge between the encoder and decoder. This increases the field of view of the filters and allows them to include a wider context. The proposed AB-ResUNet+ is evaluated on eleven datasets of different cardiovascular structures, including coronary sinus (CS), descending aorta (DA), inferior vena cava (IVC), left atrial appendage (LAA), left atrial wall (LAW), papillary muscle (PM), posterior mitral leaflet (PML), proximal ascending aorta (PAA), pulmonary aorta (PA), right ventricular wall (RVW), and superior vena cava (SVC). Our experimental evaluations show that the proposed AB-ResUNet+ significantly outperforms the UNet, ResUNet, and ResUNet++ architecture by achieving higher values in terms of Dice coefficient and mIoU.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Projekti:
UIP-2017-05-4968 - Metode za interpretaciju medicinskih snimki za detaljnu analizu zdravlja srca (IMAGINEHEART) (Galić, Irena, HRZZ - 2017-05) ( CroRIS)

Ustanove:
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek

Profili:

Avatar Url Hrvoje Leventić (autor)

Avatar Url Marija Habijan (autor)

Avatar Url Krešimir Romić (autor)

Avatar Url Irena Galić (autor)

Poveznice na cjeloviti tekst rada:

doi www.mdpi.com

Citiraj ovu publikaciju:

Habijan, Marija; Galić, Irena; Romić, Krešimir; Leventić, Hrvoje
AB-ResUNet+: Improving Multiple Cardiovascular Structure Segmentation from Computed Tomography Angiography Images // Applied Sciences, 12 (2022), 6; 3024, 18 doi:10.3390/app12063024 (međunarodna recenzija, članak, znanstveni)
Habijan, M., Galić, I., Romić, K. & Leventić, H. (2022) AB-ResUNet+: Improving Multiple Cardiovascular Structure Segmentation from Computed Tomography Angiography Images. Applied Sciences, 12 (6), 3024, 18 doi:10.3390/app12063024.
@article{article, author = {Habijan, Marija and Gali\'{c}, Irena and Romi\'{c}, Kre\v{s}imir and Leventi\'{c}, Hrvoje}, year = {2022}, pages = {18}, DOI = {10.3390/app12063024}, chapter = {3024}, keywords = {AB-ResUNet+, ASPP, attention mechanism, artificial intelligence, CTA, cardiovascular segmentation, deep learning, residual learning}, journal = {Applied Sciences}, doi = {10.3390/app12063024}, volume = {12}, number = {6}, issn = {2076-3417}, title = {AB-ResUNet+: Improving Multiple Cardiovascular Structure Segmentation from Computed Tomography Angiography Images}, keyword = {AB-ResUNet+, ASPP, attention mechanism, artificial intelligence, CTA, cardiovascular segmentation, deep learning, residual learning}, chapternumber = {3024} }
@article{article, author = {Habijan, Marija and Gali\'{c}, Irena and Romi\'{c}, Kre\v{s}imir and Leventi\'{c}, Hrvoje}, year = {2022}, pages = {18}, DOI = {10.3390/app12063024}, chapter = {3024}, keywords = {AB-ResUNet+, ASPP, attention mechanism, artificial intelligence, CTA, cardiovascular segmentation, deep learning, residual learning}, journal = {Applied Sciences}, doi = {10.3390/app12063024}, volume = {12}, number = {6}, issn = {2076-3417}, title = {AB-ResUNet+: Improving Multiple Cardiovascular Structure Segmentation from Computed Tomography Angiography Images}, keyword = {AB-ResUNet+, ASPP, attention mechanism, artificial intelligence, CTA, cardiovascular segmentation, deep learning, residual learning}, chapternumber = {3024} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font