Pregled bibliografske jedinice broj: 1187101
On The Natural Boundary Conditions In The Mixed Collocation Methods For Elasticity Problems
On The Natural Boundary Conditions In The Mixed Collocation Methods For Elasticity Problems // CMMoST 2021 Full Papers / Lorenzana Ibán, Antolín ; Gil Martín, Luisa María ; Hernández Montes, Enrique ; Cámara Pérez, Margarita ; Compán Cardiel, Víctor ; Sáez Pérez, Andrés (ur.).
Valladolid: Universidad de Valladolid, 2022. str. 321-334 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1187101 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On The Natural Boundary Conditions In The Mixed
Collocation Methods For Elasticity Problems
Autori
Jalušić, Boris ; Jarak, Tomislav
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
CMMoST 2021 Full Papers
/ Lorenzana Ibán, Antolín ; Gil Martín, Luisa María ; Hernández Montes, Enrique ; Cámara Pérez, Margarita ; Compán Cardiel, Víctor ; Sáez Pérez, Andrés - Valladolid : Universidad de Valladolid, 2022, 321-334
ISBN
978-84-09-39323-7
Skup
6th International Congress on Mechanical Models in Structural Engineering (CMMoST 2021)
Mjesto i datum
Valladolid, Španjolska, 01.12.2021. - 03.12.2021
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
mixed collocation methods, gradient elasticity, staggered approach, natural boundary conditions.
Sažetak
The mixed Meshless Local Petrov-Galerkin (MLPG) collocation method is applied for solving problems in gradient elasticity. The mixed collocation approach is utilized to lower the continuity requirements of the approximation functions in the numerical model and improve its numerical efficiency. The method utilizes a staggered solution procedure, where the original gradient elasticity problem is solved by solving two successive sub-problems governed by the second- order differential equations. Furthermore, two different staggered procedures are applied. Thereby, the solution of the first (classical) sub-problem is used as the input for the second (gradient) subproblem. Special attention is dedicated to the utilization of appropriate natural boundary conditions in the gradient subproblem. The proposed procedures are tested by the problem of a rectangular plate with a crack, where obtained numerical results are compared to available analytical solutions.
Izvorni jezik
Engleski
Znanstvena područja
Strojarstvo, Temeljne tehničke znanosti