Pregled bibliografske jedinice broj: 1186824
Involute of Pseudo-Null Curve in Minkowski Space
Involute of Pseudo-Null Curve in Minkowski Space // 22nd Scientific-Professional Colloquium on Geometry and Graphics / Došlić, T. ; Jurkin, E. (ur.).
Zagreb: Hrvatsko društvo za geometriju i grafiku, 2021. str. 17-18 (predavanje, domaća recenzija, sažetak, znanstveni)
CROSBI ID: 1186824 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Involute of Pseudo-Null Curve in Minkowski Space
Autori
Milin Šipuš, Željka ; Filipan, Ivana ; Primorac Gajčić, Ljiljana ; Lopez, Rafael
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Skup
22nd Scientific-Professional Colloquium on Geometry and Graphics
Mjesto i datum
Čiovo, Hrvatska, 05.09.2021. - 09.09.2021
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Domaća recenzija
Ključne riječi
Involute, Minkowski space, pseudo-null curve
Sažetak
An involute of a curve in space is a curve to which all tangent lines of the given curve are normal. It is also known for the property that it can be realized as the locus of the free end of a taut string that is unwound from the initial curve. A curve possesses a one-parameter family of involutes and they are all parallel. Involutes of a curve c parametrized by arc-length are given by i(s) = c(s) + (−s + a)t(s), where a is a constant, and t = c'. In this presentation we correct this result and we investigate properties of involute of pseudo-null curve in 3-dimensional Minkowski space.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Rudarsko-geološko-naftni fakultet, Zagreb,
Sveučilište u Osijeku, Odjel za matematiku