Pregled bibliografske jedinice broj: 1186812
Harmonic Evolutes of B-scrolls with Constant Mean Curvature in Minkowski Space
Harmonic Evolutes of B-scrolls with Constant Mean Curvature in Minkowski Space // 4. hrvatska konferencija za geometriju i grafiku / Došlić, T. ; Jurkin, E. (ur.).
Zagreb: Hrvatsko društvo za geometriju i grafiku, 2018. str. 34-34 (predavanje, domaća recenzija, sažetak, znanstveni)
CROSBI ID: 1186812 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Harmonic Evolutes of B-scrolls with Constant Mean
Curvature in Minkowski Space
Autori
Filipan, Ivana ; Milin-Šipuš, Željka ; Primorac Gajčić, Ljiljana
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Skup
4. hrvatska konferencija za geometriju i grafiku
Mjesto i datum
Peroj, Hrvatska, 02.09.2018. - 06.09.2018
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Domaća recenzija
Ključne riječi
Minkowski space, harmonic evolute, B-scroll, Bertrand curve
Sažetak
A ruled surface in 3-dimensional Minkowski space is a surface which can be parametrized by f(u, v)=c(u)+ve(u), where c(u) is a base curve and e(u) a non- vanishing vector field along c which generates the rulings v∈R. When c'(u), e(u) are both null, ruled surfaces are called the null- scrolls, or in the special case, the B- scrolls. In this presentation we investigate properties of harmonic evolutes of B-scrolls with constant mean curvature in Minkowski space and their relationship to null Bertrand curves. The harmonic evolute of a surface is the locus of points which are harmonic conjugates of a point of a surface with respect to its centers of curvature. The Bertrand curves are curves whose principal normals are the principal normals of another curve.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb,
Rudarsko-geološko-naftni fakultet, Zagreb,
Sveučilište u Osijeku, Odjel za matematiku