Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1186607

Deep Regression Neural Networks for Proportion Judgment


Miličević, Mario; Batoš, Vedran; Lipovac, Adriana; Car, Željka
Deep Regression Neural Networks for Proportion Judgment // Future Internet, 14 (2022), 4; 100, 16 doi:10.3390/fi14040100 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1186607 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Deep Regression Neural Networks for Proportion Judgment

Autori
Miličević, Mario ; Batoš, Vedran ; Lipovac, Adriana ; Car, Željka

Izvornik
Future Internet (1999-5903) 14 (2022), 4; 100, 16

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
deep learning ; deep regression ; computer vision ; convolutional neural networks ; proportion judgment

Sažetak
Deep regression models are widely employed to solve computer vision tasks, such as human age or pose estimation, crowd counting, object detection, etc. Another possible area of application, which to our knowledge has not been systematically explored so far, is proportion judgment. As a prerequisite for successful decision making, individuals often have to use proportion judgment strategies, with which they estimate the magnitude of one stimulus relative to another (larger) stimulus. This makes this estimation problem interesting for the application of machine learning techniques. In regard to this, we proposed various deep regression architectures, which we tested on three original datasets of very different origin and composition. This is a novel approach, as the assumption is that the model can learn the concept of proportion without explicitly counting individual objects. With comprehensive experiments, we have demonstrated the effectiveness of the proposed models which can predict proportions on real-life datasets more reliably than human experts, considering the coefficient of determination (>0.95) and the amount of errors (MAE < 2, RMSE < 3). If there is no significant number of errors in determining the ground truth, with an appropriate size of the learning dataset, an additional reduction of MAE to 0.14 can be achieved. The used datasets will be publicly available to serve as reference data sources in similar projects.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
Sveučilište u Dubrovniku

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada doi www.mdpi.com

Citiraj ovu publikaciju:

Miličević, Mario; Batoš, Vedran; Lipovac, Adriana; Car, Željka
Deep Regression Neural Networks for Proportion Judgment // Future Internet, 14 (2022), 4; 100, 16 doi:10.3390/fi14040100 (međunarodna recenzija, članak, znanstveni)
Miličević, M., Batoš, V., Lipovac, A. & Car, Ž. (2022) Deep Regression Neural Networks for Proportion Judgment. Future Internet, 14 (4), 100, 16 doi:10.3390/fi14040100.
@article{article, author = {Mili\v{c}evi\'{c}, Mario and Bato\v{s}, Vedran and Lipovac, Adriana and Car, \v{Z}eljka}, year = {2022}, pages = {16}, DOI = {10.3390/fi14040100}, chapter = {100}, keywords = {deep learning, deep regression, computer vision, convolutional neural networks, proportion judgment}, journal = {Future Internet}, doi = {10.3390/fi14040100}, volume = {14}, number = {4}, issn = {1999-5903}, title = {Deep Regression Neural Networks for Proportion Judgment}, keyword = {deep learning, deep regression, computer vision, convolutional neural networks, proportion judgment}, chapternumber = {100} }
@article{article, author = {Mili\v{c}evi\'{c}, Mario and Bato\v{s}, Vedran and Lipovac, Adriana and Car, \v{Z}eljka}, year = {2022}, pages = {16}, DOI = {10.3390/fi14040100}, chapter = {100}, keywords = {deep learning, deep regression, computer vision, convolutional neural networks, proportion judgment}, journal = {Future Internet}, doi = {10.3390/fi14040100}, volume = {14}, number = {4}, issn = {1999-5903}, title = {Deep Regression Neural Networks for Proportion Judgment}, keyword = {deep learning, deep regression, computer vision, convolutional neural networks, proportion judgment}, chapternumber = {100} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Emerging Sources Citation Index (ESCI)
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • INSPEC


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font