Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1186464

Bayesian CNN-BiLSTM and Vine-GMCM Based Probabilistic Forecasting of Hour-Ahead Wind Farm Power Outputs


Zou, Mingzhe; Holjevac, Ninoslav; Dakovic, Josip; Kuzle, Igor; Langella, Roberto; Giorgio, Vincenzo Di; Djokic, Sasa Z.
Bayesian CNN-BiLSTM and Vine-GMCM Based Probabilistic Forecasting of Hour-Ahead Wind Farm Power Outputs // IEEE Transactions on Sustainable Energy, 13 (2022), 2; 1169-1187 doi:10.1109/tste.2022.3148718 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1186464 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Bayesian CNN-BiLSTM and Vine-GMCM Based Probabilistic Forecasting of Hour-Ahead Wind Farm Power Outputs

Autori
Zou, Mingzhe ; Holjevac, Ninoslav ; Dakovic, Josip ; Kuzle, Igor ; Langella, Roberto ; Giorgio, Vincenzo Di ; Djokic, Sasa Z.

Izvornik
IEEE Transactions on Sustainable Energy (1949-3029) 13 (2022), 2; 1169-1187

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Bayesian framework , convolutional neural network , Copula model , deep learning , forecasting , weather variables , wind energy , wind farm , wind turbine

Sažetak
The importance of the accurate forecasting of power outputsof wind-based generation systems is increasing, as their contributions to the total system generation are rising. However, wind energy resource exhibits strong and stochastic spatio- temporal variations, which further combine with the uncertainties in WF operating regimes, i.e., numbers of wind turbines in normal operation, under curtailment, or that are faulty/disconnected. This paper presents a novel approach for efficient dealing with uncertainties in hour-ahead forecasted WF power outputs. It first applies Bayesian convolutional neural network-bidirectional long short-term memory (Bayesian CNN-BiLSTM) method, which allows for a more accurate probabilistic forecasting of wind speed, air density and wind direction, using the nearby WFs as additional input data. The WF operating regimes are also predicted using the same Bayesian CNN-BiLSTM structure. Afterwards, a high-dimensional Vine-Gaussian mixture Copula model is combined with Bayesian CNN-BiLSTM model to evaluate uncertainties in the WF outputs based on a cross-correlational conditioning of the forecasted weather variables and operating regimes. The proposed combined model is applied and validated using the actual field measurements from two WF clusters in close locations in Croatia and is also benchmarked against several other models.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Josip Đaković (autor)

Avatar Url Igor Kuzle (autor)

Avatar Url Ninoslav Holjevac (autor)

Poveznice na cjeloviti tekst rada:

doi ieeexplore.ieee.org

Citiraj ovu publikaciju:

Zou, Mingzhe; Holjevac, Ninoslav; Dakovic, Josip; Kuzle, Igor; Langella, Roberto; Giorgio, Vincenzo Di; Djokic, Sasa Z.
Bayesian CNN-BiLSTM and Vine-GMCM Based Probabilistic Forecasting of Hour-Ahead Wind Farm Power Outputs // IEEE Transactions on Sustainable Energy, 13 (2022), 2; 1169-1187 doi:10.1109/tste.2022.3148718 (međunarodna recenzija, članak, znanstveni)
Zou, M., Holjevac, N., Dakovic, J., Kuzle, I., Langella, R., Giorgio, V. & Djokic, S. (2022) Bayesian CNN-BiLSTM and Vine-GMCM Based Probabilistic Forecasting of Hour-Ahead Wind Farm Power Outputs. IEEE Transactions on Sustainable Energy, 13 (2), 1169-1187 doi:10.1109/tste.2022.3148718.
@article{article, author = {Zou, Mingzhe and Holjevac, Ninoslav and Dakovic, Josip and Kuzle, Igor and Langella, Roberto and Giorgio, Vincenzo Di and Djokic, Sasa Z.}, year = {2022}, pages = {1169-1187}, DOI = {10.1109/tste.2022.3148718}, keywords = {Bayesian framework , convolutional neural network , Copula model , deep learning , forecasting , weather variables , wind energy , wind farm , wind turbine}, journal = {IEEE Transactions on Sustainable Energy}, doi = {10.1109/tste.2022.3148718}, volume = {13}, number = {2}, issn = {1949-3029}, title = {Bayesian CNN-BiLSTM and Vine-GMCM Based Probabilistic Forecasting of Hour-Ahead Wind Farm Power Outputs}, keyword = {Bayesian framework , convolutional neural network , Copula model , deep learning , forecasting , weather variables , wind energy , wind farm , wind turbine} }
@article{article, author = {Zou, Mingzhe and Holjevac, Ninoslav and Dakovic, Josip and Kuzle, Igor and Langella, Roberto and Giorgio, Vincenzo Di and Djokic, Sasa Z.}, year = {2022}, pages = {1169-1187}, DOI = {10.1109/tste.2022.3148718}, keywords = {Bayesian framework , convolutional neural network , Copula model , deep learning , forecasting , weather variables , wind energy , wind farm , wind turbine}, journal = {IEEE Transactions on Sustainable Energy}, doi = {10.1109/tste.2022.3148718}, volume = {13}, number = {2}, issn = {1949-3029}, title = {Bayesian CNN-BiLSTM and Vine-GMCM Based Probabilistic Forecasting of Hour-Ahead Wind Farm Power Outputs}, keyword = {Bayesian framework , convolutional neural network , Copula model , deep learning , forecasting , weather variables , wind energy , wind farm , wind turbine} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font