Pregled bibliografske jedinice broj: 1186411
Elements of Learning Algorithms for Natural Scene Understanding
Elements of Learning Algorithms for Natural Scene Understanding // Proceedings of the Croatian Computer Vision Workshop (CCVW)
Zagreb, Hrvatska, 2021. str. 1-1 (pozvano predavanje, nije recenziran, sažetak, znanstveni)
CROSBI ID: 1186411 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Elements of Learning Algorithms for Natural Scene Understanding
Autori
Šegvić, Siniša
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Proceedings of the Croatian Computer Vision Workshop (CCVW)
/ - , 2021, 1-1
Skup
Croatian Computer Vision Workshop (CCVW)
Mjesto i datum
Zagreb, Hrvatska, 20.10.2021
Vrsta sudjelovanja
Pozvano predavanje
Vrsta recenzije
Nije recenziran
Ključne riječi
Deep learning, dense prediction
Sažetak
Deep learning has led to unprecedented improvement of computer vision, natural language processing and other fields of artificial intelligence. However, our models still underperform on unusual and adversarial test examples, while offering limited interpretability and explainability. Nevertheless, experienced practitioners seldom regard their models as black boxes. Instead, they promote desired behaviour through suitable kinds of inductive bias and careful exploitation of available data. I will illustrate these concepts by describing elements of learning algorithms which have been extensively exploited within my research group in the past few years. The second part of my talk will describe our ongoing collaborations with the local industry. I will point out advantages of such arrangements for all involved parties. The talk will conclude with a brief overview of current challenges and opportunities in our field.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Projekti:
--IP-2020-02-5851 - Napredna gusta predikcija za računalni vid (ADEPT) (Šegvić, Siniša) ( CroRIS)
Profili:
Siniša Šegvić
(autor)