Pregled bibliografske jedinice broj: 1184925
Densely connected normalizing flows
Densely connected normalizing flows // Advances in Neural Information Processing Systems / Ranzato, Marc'Aurelio ; Beygelzimer, Alina ; Nguyen, K. ; Liang, Percy S. ; Wortman Vaughan, Jennifer ; Dauphin, Yann (ur.).
online: NeurIPS, 2021. str. 1-15 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1184925 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Densely connected normalizing flows
Autori
Grcić, Matej ; Grubišić, Ivan ; Šegvić, Siniša
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Advances in Neural Information Processing Systems
/ Ranzato, Marc'Aurelio ; Beygelzimer, Alina ; Nguyen, K. ; Liang, Percy S. ; Wortman Vaughan, Jennifer ; Dauphin, Yann - Online : NeurIPS, 2021, 1-15
Skup
35th Conference on Neural Information Processing Systems (NeurIPS 2021)
Mjesto i datum
Toronto, Kanada; online, 06.12.2021. - 14.12.2021
Vrsta sudjelovanja
Poster
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
normalizing flows, dense connectivity
Sažetak
Normalizing flows are bijective mappings between inputs and latent representations with a fully factorized distribution. They are very attractive due to exact likelihood evaluation and efficient sampling. However, their effective capacity is often insufficient since the bijectivity constraint limits the model width. We address this issue by incrementally padding intermediate representations with noise. We precondition the noise in accordance with previous invertible units, which we describe as cross-unit coupling. Our invertible glow-like modules increase the model expressivity by fusing a densely connected block with Nyström self-attention. We refer to our architecture as DenseFlow since both cross-unit and intra-module couplings rely on dense connectivity. Experiments show significant improvements due to the proposed contributions and reveal state-of-the-art density estimation under moderate computing budgets.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Projekti:
--IP-2020-02-5851 - Napredna gusta predikcija za računalni vid (ADEPT) (Šegvić, Siniša) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb