Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1184925

Densely connected normalizing flows


Grcić, Matej; Grubišić, Ivan; Šegvić, Siniša
Densely connected normalizing flows // Advances in Neural Information Processing Systems / Ranzato, Marc'Aurelio ; Beygelzimer, Alina ; Nguyen, K. ; Liang, Percy S. ; Wortman Vaughan, Jennifer ; Dauphin, Yann (ur.).
online: NeurIPS, 2021. str. 1-15 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1184925 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Densely connected normalizing flows

Autori
Grcić, Matej ; Grubišić, Ivan ; Šegvić, Siniša

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Advances in Neural Information Processing Systems / Ranzato, Marc'Aurelio ; Beygelzimer, Alina ; Nguyen, K. ; Liang, Percy S. ; Wortman Vaughan, Jennifer ; Dauphin, Yann - Online : NeurIPS, 2021, 1-15

Skup
35th Conference on Neural Information Processing Systems (NeurIPS 2021)

Mjesto i datum
Toronto, Kanada; online, 06.12.2021. - 14.12.2021

Vrsta sudjelovanja
Poster

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
normalizing flows, dense connectivity

Sažetak
Normalizing flows are bijective mappings between inputs and latent representations with a fully factorized distribution. They are very attractive due to exact likelihood evaluation and efficient sampling. However, their effective capacity is often insufficient since the bijectivity constraint limits the model width. We address this issue by incrementally padding intermediate representations with noise. We precondition the noise in accordance with previous invertible units, which we describe as cross-unit coupling. Our invertible glow-like modules increase the model expressivity by fusing a densely connected block with Nyström self-attention. We refer to our architecture as DenseFlow since both cross-unit and intra-module couplings rely on dense connectivity. Experiments show significant improvements due to the proposed contributions and reveal state-of-the-art density estimation under moderate computing budgets.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Projekti:
--IP-2020-02-5851 - Napredna gusta predikcija za računalni vid (ADEPT) (Šegvić, Siniša) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Siniša Šegvić (autor)

Avatar Url Ivan Grubišić (autor)

Avatar Url Matej Grcić (autor)

Poveznice na cjeloviti tekst rada:

proceedings.neurips.cc arxiv.org

Citiraj ovu publikaciju:

Grcić, Matej; Grubišić, Ivan; Šegvić, Siniša
Densely connected normalizing flows // Advances in Neural Information Processing Systems / Ranzato, Marc'Aurelio ; Beygelzimer, Alina ; Nguyen, K. ; Liang, Percy S. ; Wortman Vaughan, Jennifer ; Dauphin, Yann (ur.).
online: NeurIPS, 2021. str. 1-15 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Grcić, M., Grubišić, I. & Šegvić, S. (2021) Densely connected normalizing flows. U: Ranzato, M., Beygelzimer, A., Nguyen, K., Liang, P., Wortman Vaughan, J. & Dauphin, Y. (ur.)Advances in Neural Information Processing Systems.
@article{article, author = {Grci\'{c}, Matej and Grubi\v{s}i\'{c}, Ivan and \v{S}egvi\'{c}, Sini\v{s}a}, year = {2021}, pages = {1-15}, keywords = {normalizing flows, dense connectivity}, title = {Densely connected normalizing flows}, keyword = {normalizing flows, dense connectivity}, publisher = {NeurIPS}, publisherplace = {Toronto, Kanada; online} }
@article{article, author = {Grci\'{c}, Matej and Grubi\v{s}i\'{c}, Ivan and \v{S}egvi\'{c}, Sini\v{s}a}, year = {2021}, pages = {1-15}, keywords = {normalizing flows, dense connectivity}, title = {Densely connected normalizing flows}, keyword = {normalizing flows, dense connectivity}, publisher = {NeurIPS}, publisherplace = {Toronto, Kanada; online} }




Contrast
Increase Font
Decrease Font
Dyslexic Font