Pregled bibliografske jedinice broj: 1184875
Mixtures of Gaussian Processes for Robot Motion Planning Using Stochastic Trajectory Optimization
Mixtures of Gaussian Processes for Robot Motion Planning Using Stochastic Trajectory Optimization // IEEE Transactions on Systems, Man, and Cybernetics: Systems, 1 (2022), 1-13 doi:10.1109/tsmc.2022.3155378 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1184875 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Mixtures of Gaussian Processes for Robot Motion
Planning Using Stochastic Trajectory Optimization
Autori
Petrović, Luka ; Marković, Ivan ; Petrović, Ivan
Izvornik
IEEE Transactions on Systems, Man, and Cybernetics: Systems (2168-2216) 1
(2022);
1-13
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
High-dimensional motion planning ; mixtures of Gaussian processes ; trajectory optimization ; stochastic optimization
Sažetak
Robot motion planning methods based on trajectory optimization can efficiently generate feasible and optimal trajectories by minimizing a suitable cost function, even in high-dimensional spaces. However, the main drawback of these methods lies in their proneness to infeasible local minima, especially in complex environments. To mitigate this issue, we propose a novel motion planning method that represents trajectories as samples from a mixture of continuous-time Gaussian processes (MGP) and employs stochastic optimization in order to update the MGP parameters in a cost-minimizing manner. The contributions of the proposed trajectory optimization method arise from the introduced mixture representation and stochastic gradient estimation, dominantly enabling better exploration of the trajectory space and including nondifferentiable optimizing costs. We evaluated the proposed method in multiple simulation benchmarks featuring 7, degree-of-freedom (DOF) robot arms and a 10, DOF mobile manipulator. We also conducted a real-world experiment with a 14, DOF dual-arm robot. The experimental results demonstrated that the proposed method achieves higher success rate than several state-of-the-art methods, while the advantages stemming from MGPs and stochastic optimization, like trajectory smoothness, support of nondifferentiable cost functions, multiple trajectory solutions, and the ability to tackle high-dimensional planning problems, are inherently kept.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo, Temeljne tehničke znanosti, Interdisciplinarne tehničke znanosti, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Projekti:
--KK.01.1.1.01.009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (DATACROSS) (Šmuc, Tomislav; Lončarić, Sven; Petrović, Ivan; Jokić, Andrej; Palunko, Ivana) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus