Pregled bibliografske jedinice broj: 1183573
Regression Models for Geospatial Big Data
Regression Models for Geospatial Big Data // Abstract Book - 6th International Workshop on Data Science / Lončarić, Sven ; Šmuc, Tomislav (ur.).
Zagreb: Znanstveni centar izvrsnosti za znanost o podatcima i kooperativne sustave, 2021. str. 29-32 (predavanje, domaća recenzija, kratko priopćenje, znanstveni)
CROSBI ID: 1183573 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Regression Models for Geospatial Big Data
Autori
Katušić, Damjan ; Pripužić, Krešimir
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, kratko priopćenje, znanstveni
Izvornik
Abstract Book - 6th International Workshop on Data Science
/ Lončarić, Sven ; Šmuc, Tomislav - Zagreb : Znanstveni centar izvrsnosti za znanost o podatcima i kooperativne sustave, 2021, 29-32
Skup
5th International Workshop on Data Science (IWDS 2020)
Mjesto i datum
Zagreb, Hrvatska, 24.11.2020
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Domaća recenzija
Ključne riječi
regression ; big data ; geospatial data
Sažetak
There are different approaches that seek to model heterogeneity present in the spatial data. Spatial heterogeneity expresses different influence of independent variables on the dependent variable at the observations’ locations. These relationships can change abruptly between smaller areas within the total observed spatial area, while within these smaller areas they remain relatively homogeneous. They are important for data visualization and prediction modeling. To test different approaches of efficient modelling of spatial heterogeneity, the following models have been implemented and evaluated: classical multiple linear regression that models dependent variable as a single linear function of several independent variables (GLR), geographically weighted regression (GWR) model proposed in [1], geographically time weighted regression (GTWR) model described in [2], its time-only based variant (TWR), and our custom implementations of geographically clustered regression (GCR) and geographically time clustered regression (GTCR) that adds time dimension to enforce better predictions.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo
POVEZANOST RADA
Projekti:
HRZZ-UIP-2017-05-9066 - Učinkovita stvarnovremenska obrada brzih geoprostornih podataka (RETROFIT) (Pripužić, Krešimir, HRZZ ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb