Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1183569

Time Series Forecasting in Sensor Data Streams


Katušić, Damjan; Pripužić, Krešimir
Time Series Forecasting in Sensor Data Streams // Abstract Book - Fourth International Workshop on Data Science / Lončarić, Sven ; Šmuc, Tomislav (ur.).
Zagreb: Znanstveni centar izvrsnosti za znanost o podatcima i kooperativne sustave, 2019. str. 46-48 (predavanje, domaća recenzija, kratko priopćenje, znanstveni)


CROSBI ID: 1183569 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Time Series Forecasting in Sensor Data Streams

Autori
Katušić, Damjan ; Pripužić, Krešimir

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, kratko priopćenje, znanstveni

Izvornik
Abstract Book - Fourth International Workshop on Data Science / Lončarić, Sven ; Šmuc, Tomislav - Zagreb : Znanstveni centar izvrsnosti za znanost o podatcima i kooperativne sustave, 2019, 46-48

Skup
4rd International Workshop on Data Science (IWDS 2019)

Mjesto i datum
Zagreb, Hrvatska, 15.10.2019

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Domaća recenzija

Ključne riječi
Internet of Things ; streaming data, time series ; forecasting

Sažetak
We are witnessing a dramatic transition in our modern information-oriented world from the age of a single Internet-connected device per person into the age of the Internet of Things (IoT) where there is a multitude of connected devices per person. Many of these devices are sensors which generate a specific type of streaming data which is usually highly frequent, but mostly small in size. There are numerous examples of smart IoT applications where sensor data streams need to be automatically processed and analyzed by consumer components in real-time [1]. In this paper we focus on real-time fore- casting (i.e. prediction) of future values within sensor data streams. In this context, the data stream from a sensor may be considered as a time series that has to be forecasted. Sometimes, a sensor data stream can be highly correlated to several other sensor data streams (e.g. in the case of hydrological and weather sensors) which makes such a forecast quite challenging, as we present in the rest of this paper.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo



POVEZANOST RADA


Projekti:

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Damjan Katušić (autor)

Avatar Url Krešimir Pripužić (autor)

Poveznice na cjeloviti tekst rada:

drive.google.com

Citiraj ovu publikaciju:

Katušić, Damjan; Pripužić, Krešimir
Time Series Forecasting in Sensor Data Streams // Abstract Book - Fourth International Workshop on Data Science / Lončarić, Sven ; Šmuc, Tomislav (ur.).
Zagreb: Znanstveni centar izvrsnosti za znanost o podatcima i kooperativne sustave, 2019. str. 46-48 (predavanje, domaća recenzija, kratko priopćenje, znanstveni)
Katušić, D. & Pripužić, K. (2019) Time Series Forecasting in Sensor Data Streams. U: Lončarić, S. & Šmuc, T. (ur.)Abstract Book - Fourth International Workshop on Data Science.
@article{article, author = {Katu\v{s}i\'{c}, Damjan and Pripu\v{z}i\'{c}, Kre\v{s}imir}, year = {2019}, pages = {46-48}, keywords = {Internet of Things, streaming data, time series, forecasting}, title = {Time Series Forecasting in Sensor Data Streams}, keyword = {Internet of Things, streaming data, time series, forecasting}, publisher = {Znanstveni centar izvrsnosti za znanost o podatcima i kooperativne sustave}, publisherplace = {Zagreb, Hrvatska} }
@article{article, author = {Katu\v{s}i\'{c}, Damjan and Pripu\v{z}i\'{c}, Kre\v{s}imir}, year = {2019}, pages = {46-48}, keywords = {Internet of Things, streaming data, time series, forecasting}, title = {Time Series Forecasting in Sensor Data Streams}, keyword = {Internet of Things, streaming data, time series, forecasting}, publisher = {Znanstveni centar izvrsnosti za znanost o podatcima i kooperativne sustave}, publisherplace = {Zagreb, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font