Pregled bibliografske jedinice broj: 1183569
Time Series Forecasting in Sensor Data Streams
Time Series Forecasting in Sensor Data Streams // Abstract Book - Fourth International Workshop on Data Science / Lončarić, Sven ; Šmuc, Tomislav (ur.).
Zagreb: Znanstveni centar izvrsnosti za znanost o podatcima i kooperativne sustave, 2019. str. 46-48 (predavanje, domaća recenzija, kratko priopćenje, znanstveni)
CROSBI ID: 1183569 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Time Series Forecasting in Sensor Data Streams
Autori
Katušić, Damjan ; Pripužić, Krešimir
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, kratko priopćenje, znanstveni
Izvornik
Abstract Book - Fourth International Workshop on Data Science
/ Lončarić, Sven ; Šmuc, Tomislav - Zagreb : Znanstveni centar izvrsnosti za znanost o podatcima i kooperativne sustave, 2019, 46-48
Skup
4rd International Workshop on Data Science (IWDS 2019)
Mjesto i datum
Zagreb, Hrvatska, 15.10.2019
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Domaća recenzija
Ključne riječi
Internet of Things ; streaming data, time series ; forecasting
Sažetak
We are witnessing a dramatic transition in our modern information-oriented world from the age of a single Internet-connected device per person into the age of the Internet of Things (IoT) where there is a multitude of connected devices per person. Many of these devices are sensors which generate a specific type of streaming data which is usually highly frequent, but mostly small in size. There are numerous examples of smart IoT applications where sensor data streams need to be automatically processed and analyzed by consumer components in real-time [1]. In this paper we focus on real-time fore- casting (i.e. prediction) of future values within sensor data streams. In this context, the data stream from a sensor may be considered as a time series that has to be forecasted. Sometimes, a sensor data stream can be highly correlated to several other sensor data streams (e.g. in the case of hydrological and weather sensors) which makes such a forecast quite challenging, as we present in the rest of this paper.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb