Pregled bibliografske jedinice broj: 1182807
Ruin probability for discrete risk processes
Ruin probability for discrete risk processes // Vienna Congress on Mathematical Finance (VCMF2019)
Beč, Austrija, 2019. str. 1-1 (poster, recenziran, sažetak, znanstveni)
CROSBI ID: 1182807 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Ruin probability for discrete risk processes
Autori
Geček Tuđen, Ivana
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Skup
Vienna Congress on Mathematical Finance (VCMF2019)
Mjesto i datum
Beč, Austrija, 09.09.2019. - 11.09.2019
Vrsta sudjelovanja
Poster
Vrsta recenzije
Recenziran
Ključne riječi
skip-free random walk, ballot theorem, level crossing, ruin probability, Pollaczek-Khinchine formula
Sažetak
We study the discrete-time risk process modeled by the skip-free random walk and derive the results connected to the ruin probability and crossing the fixed level for this type of process. We use the method relying on the classical ballot theorems to derive the results for crossing the fixed level and compare them to the results known for the continuous-time version of the risk process. Further, we generalize this model by adding the perturbation and derive similar results using the skip-free structure of the process. In the end, we also derive the famous Pollaczek-Khinchine type formula for this generalized process, using the decomposition of the supremum of the dual-process at some special instants of time.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Ivana Geček Tuđen
(autor)