Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1182729

Segmentation and Quantification of Bi-Ventricles and Myocardium Using 3D SERes-U-Net


Habijan, Marija; Galić, Irena; Leventić, Hrvoje; Romić, Krešimir; Babin, Danilo
Segmentation and Quantification of Bi-Ventricles and Myocardium Using 3D SERes-U-Net // Systems, Signals and Image Processing / Gregor Rozinaj, Radoslav Vargic (ur.).
Bratislava: Springer, 2022. str. 3-14 doi:10.1007/978-3-030-96878-6_1


CROSBI ID: 1182729 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Segmentation and Quantification of Bi-Ventricles and Myocardium Using 3D SERes-U-Net

Autori
Habijan, Marija ; Galić, Irena ; Leventić, Hrvoje ; Romić, Krešimir ; Babin, Danilo

Vrsta, podvrsta i kategorija rada
Poglavlja u knjigama, znanstveni

Knjiga
Systems, Signals and Image Processing

Urednik/ci
Gregor Rozinaj, Radoslav Vargic

Izdavač
Springer

Grad
Bratislava

Godina
2022

Raspon stranica
3-14

ISSN
1865-0929

Ključne riječi
Cardiac MRI segmentation ; Left ventricle ; Right ventricle ; Myocardium ; Residual learning ; Squeeze and excitation ; 3D SERes- U-Net

Sažetak
Automatic cardiac MRI segmentation, including left and right ventricular endocardium and epicardium, has an essential role in clinical diagnosis by providing crucial information about cardiac function. Determining heart chamber properties, such as volume or ejection fraction, directly relies on their accurate segmentation. In this work, we propose a new automatic method for the segmentation of myocardium, left, and right ventricles from MRI images. We introduce a new architecture that incorporates SERes blocks into 3D U-net architecture (3D SERes-U-Net). The SERes blocks incorporate squeeze-and-excitation operations into residual learning. The adaptive feature recalibration ability of squeeze-and- excitation operations boosts the network's representational power while feature reuse utilizes e ective learning of the features, which improves segmentation performance. We evaluate the proposed method on the testing dataset of the MICCAI Automated Cardiac Diagnosis Challenge (ACDC) dataset and obtain highly comparable results to the state-of-the-art methods.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Projekti:
UIP-2017-05-4968 - Metode za interpretaciju medicinskih snimki za detaljnu analizu zdravlja srca (IMAGINEHEART) (Galić, Irena, HRZZ - 2017-05) ( CroRIS)

Ustanove:
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek

Profili:

Avatar Url Hrvoje Leventić (autor)

Avatar Url Marija Habijan (autor)

Avatar Url Krešimir Romić (autor)

Avatar Url Irena Galić (autor)

Poveznice na cjeloviti tekst rada:

doi

Citiraj ovu publikaciju:

Habijan, Marija; Galić, Irena; Leventić, Hrvoje; Romić, Krešimir; Babin, Danilo
Segmentation and Quantification of Bi-Ventricles and Myocardium Using 3D SERes-U-Net // Systems, Signals and Image Processing / Gregor Rozinaj, Radoslav Vargic (ur.).
Bratislava: Springer, 2022. str. 3-14 doi:10.1007/978-3-030-96878-6_1
Habijan, M., Galić, I., Leventić, H., Romić, K. & Babin, D. (2022) Segmentation and Quantification of Bi-Ventricles and Myocardium Using 3D SERes-U-Net. U: Gregor Rozinaj, R. (ur.) Systems, Signals and Image Processing. Bratislava, Springer, str. 3-14 doi:10.1007/978-3-030-96878-6_1.
@inbook{inbook, author = {Habijan, Marija and Gali\'{c}, Irena and Leventi\'{c}, Hrvoje and Romi\'{c}, Kre\v{s}imir and Babin, Danilo}, editor = {Gregor Rozinaj, R.}, year = {2022}, pages = {3-14}, DOI = {10.1007/978-3-030-96878-6\_1}, keywords = {Cardiac MRI segmentation, Left ventricle, Right ventricle, Myocardium, Residual learning, Squeeze and excitation, 3D SERes- U-Net}, doi = {10.1007/978-3-030-96878-6\_1}, issn = {1865-0929}, title = {Segmentation and Quantification of Bi-Ventricles and Myocardium Using 3D SERes-U-Net}, keyword = {Cardiac MRI segmentation, Left ventricle, Right ventricle, Myocardium, Residual learning, Squeeze and excitation, 3D SERes- U-Net}, publisher = {Springer}, publisherplace = {Bratislava} }
@inbook{inbook, author = {Habijan, Marija and Gali\'{c}, Irena and Leventi\'{c}, Hrvoje and Romi\'{c}, Kre\v{s}imir and Babin, Danilo}, editor = {Gregor Rozinaj, R.}, year = {2022}, pages = {3-14}, DOI = {10.1007/978-3-030-96878-6\_1}, keywords = {Cardiac MRI segmentation, Left ventricle, Right ventricle, Myocardium, Residual learning, Squeeze and excitation, 3D SERes- U-Net}, doi = {10.1007/978-3-030-96878-6\_1}, issn = {1865-0929}, title = {Segmentation and Quantification of Bi-Ventricles and Myocardium Using 3D SERes-U-Net}, keyword = {Cardiac MRI segmentation, Left ventricle, Right ventricle, Myocardium, Residual learning, Squeeze and excitation, 3D SERes- U-Net}, publisher = {Springer}, publisherplace = {Bratislava} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font