Pregled bibliografske jedinice broj: 1182729
Segmentation and Quantification of Bi-Ventricles and Myocardium Using 3D SERes-U-Net
Segmentation and Quantification of Bi-Ventricles and Myocardium Using 3D SERes-U-Net // Systems, Signals and Image Processing / Gregor Rozinaj, Radoslav Vargic (ur.).
Bratislava: Springer, 2022. str. 3-14 doi:10.1007/978-3-030-96878-6_1
CROSBI ID: 1182729 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Segmentation and Quantification of Bi-Ventricles
and Myocardium Using 3D SERes-U-Net
Autori
Habijan, Marija ; Galić, Irena ; Leventić, Hrvoje ; Romić, Krešimir ; Babin, Danilo
Vrsta, podvrsta i kategorija rada
Poglavlja u knjigama, znanstveni
Knjiga
Systems, Signals and Image Processing
Urednik/ci
Gregor Rozinaj, Radoslav Vargic
Izdavač
Springer
Grad
Bratislava
Godina
2022
Raspon stranica
3-14
ISSN
1865-0929
Ključne riječi
Cardiac MRI segmentation ; Left ventricle ; Right ventricle ; Myocardium ; Residual learning ; Squeeze and excitation ; 3D SERes- U-Net
Sažetak
Automatic cardiac MRI segmentation, including left and right ventricular endocardium and epicardium, has an essential role in clinical diagnosis by providing crucial information about cardiac function. Determining heart chamber properties, such as volume or ejection fraction, directly relies on their accurate segmentation. In this work, we propose a new automatic method for the segmentation of myocardium, left, and right ventricles from MRI images. We introduce a new architecture that incorporates SERes blocks into 3D U-net architecture (3D SERes-U-Net). The SERes blocks incorporate squeeze-and-excitation operations into residual learning. The adaptive feature recalibration ability of squeeze-and- excitation operations boosts the network's representational power while feature reuse utilizes e ective learning of the features, which improves segmentation performance. We evaluate the proposed method on the testing dataset of the MICCAI Automated Cardiac Diagnosis Challenge (ACDC) dataset and obtain highly comparable results to the state-of-the-art methods.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Projekti:
UIP-2017-05-4968 - Metode za interpretaciju medicinskih snimki za detaljnu analizu zdravlja srca (IMAGINEHEART) (Galić, Irena, HRZZ - 2017-05) ( CroRIS)
Ustanove:
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek