Pregled bibliografske jedinice broj: 1181979
Effect of Data Augmentation Methods on Face Image Classification Results
Effect of Data Augmentation Methods on Face Image Classification Results // Proceedings of the 11th International Conference on Pattern Recognition Applications and Methods 2022
Beč, Austrija: SCITEPRESS, 2022. str. 660-667 doi:10.5220/0010883800003122 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1181979 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Effect of Data Augmentation Methods on Face Image
Classification Results
Autori
Hrga, Ingrid ; Ivasic-Kos, Marina
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 11th International Conference on Pattern Recognition Applications and Methods 2022
/ - : SCITEPRESS, 2022, 660-667
ISBN
978-989-758-549-4
Skup
11th International Conference on Pattern Recognition Applications and Methods (ICPRAM)
Mjesto i datum
Beč, Austrija, 03.02.2022. - 05.02.2022
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Data Augmentation, Image Classification, Transfer Learning
Sažetak
Data augmentation encompasses a set of techniques to increase the size of a dataset artificially. Insufficient training data means that the network will be susceptible to the problem of overfitting, leading to a poor generalization capability of the network. Therefore, research efforts are focused on developing various augmentation strategies. Simple affine transformations are commonly used to expand a set. However, more advanced methods, such as information dropping or random mixing, are becoming increasingly popular. We analyze different data augmentation techniques suitable for the image classification task in this paper. We investigate how the choice of a particular approach affects the classification results depending on the size of the training dataset, the type of transfer learning applied, and the task's difficulty, which we determine based on the objectivity or subjectivity of the target attribute. Our results show that the choice of augmentation method becomes crucial in th e case of more challenging tasks, especially when using a pre-trained model as a feature extractor. Moreover, the methods that showed above-average results on smaller sets may not be the optimal choice on a larger set and vice versa.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Ustanove:
Sveučilište Jurja Dobrile u Puli,
Fakultet informatike i digitalnih tehnologija, Rijeka
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Conference Proceedings Citation Index - Science (CPCI-S)