Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1181759

A probabilistic deep learning model for predicting missing spatio-temporal data using high-performance GPU computing


Ivek, Tomislav; Vlah, Domagoj
A probabilistic deep learning model for predicting missing spatio-temporal data using high-performance GPU computing // Brijuni Applied Mathematics Workshop 2021 - Book of Abstracts
Brijuni, Hrvatska, 2021. str. 22-22 (predavanje, međunarodna recenzija, sažetak, znanstveni)


CROSBI ID: 1181759 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
A probabilistic deep learning model for predicting missing spatio-temporal data using high-performance GPU computing

Autori
Ivek, Tomislav ; Vlah, Domagoj

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
Brijuni Applied Mathematics Workshop 2021 - Book of Abstracts / - , 2021, 22-22

Skup
Brijuni Applied Mathematics Workshop 2021

Mjesto i datum
Brijuni, Hrvatska, 04.07.2021. - 10.07.2021

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Data reconstruction ; Variational autoencoder ; Convolutional neural network ; Deep learning ; Ensemble ; Extreme Value Analysis Conference challenge ; Wildfires

Sažetak
We present our winning solution model developed for the recent Data Challenge at the Extreme Value Analysis 2021 conference. The Data Challenge was about predicting deliberately missing parts of spatio-temporal numerical data on historical occurrences of wildfires in the United States. Our approach was developed with only a minimal set of assumptions and no specialist knowledge from the field of extreme value analysis. The conditional missing data importance-weighted autoencoder (CMIWAE) model is based on the variational auto-encoder architecture and is incorporating many of the recent state-of-the-art developments. The distribution of each missing data point is predicted in the absence of the complete dataset. We use a deep neural network inspired by the ResNet and U-Net architecture originally developed for image classification and segmentation tasks. The complete approach is highly parallelizable and greatly benefits from a multi-GPU high-performance computing environment. Authors hypothesize that this model is more general and could be adapted to different domains, including but not limited to: signal processing, super-resolution tasks, and numerical solving of differential equations.

Izvorni jezik
Engleski

Znanstvena područja
Matematika, Računarstvo



POVEZANOST RADA


Ustanove:
Institut za fiziku, Zagreb,
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Domagoj Vlah (autor)

Avatar Url Tomislav Ivek (autor)


Citiraj ovu publikaciju:

Ivek, Tomislav; Vlah, Domagoj
A probabilistic deep learning model for predicting missing spatio-temporal data using high-performance GPU computing // Brijuni Applied Mathematics Workshop 2021 - Book of Abstracts
Brijuni, Hrvatska, 2021. str. 22-22 (predavanje, međunarodna recenzija, sažetak, znanstveni)
Ivek, T. & Vlah, D. (2021) A probabilistic deep learning model for predicting missing spatio-temporal data using high-performance GPU computing. U: Brijuni Applied Mathematics Workshop 2021 - Book of Abstracts.
@article{article, author = {Ivek, Tomislav and Vlah, Domagoj}, year = {2021}, pages = {22-22}, keywords = {Data reconstruction, Variational autoencoder, Convolutional neural network, Deep learning, Ensemble, Extreme Value Analysis Conference challenge, Wildfires}, title = {A probabilistic deep learning model for predicting missing spatio-temporal data using high-performance GPU computing}, keyword = {Data reconstruction, Variational autoencoder, Convolutional neural network, Deep learning, Ensemble, Extreme Value Analysis Conference challenge, Wildfires}, publisherplace = {Brijuni, Hrvatska} }
@article{article, author = {Ivek, Tomislav and Vlah, Domagoj}, year = {2021}, pages = {22-22}, keywords = {Data reconstruction, Variational autoencoder, Convolutional neural network, Deep learning, Ensemble, Extreme Value Analysis Conference challenge, Wildfires}, title = {A probabilistic deep learning model for predicting missing spatio-temporal data using high-performance GPU computing}, keyword = {Data reconstruction, Variational autoencoder, Convolutional neural network, Deep learning, Ensemble, Extreme Value Analysis Conference challenge, Wildfires}, publisherplace = {Brijuni, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font