Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1179927

Detecting Anomalies from Sound in the Context of Smart Home Using Unsupervised Learning on Edge Devices


Barišić, Marko
Detecting Anomalies from Sound in the Context of Smart Home Using Unsupervised Learning on Edge Devices, 2020., diplomski rad, diplomski, Fakultet elektrotehnike i računarstva, Zagreb


CROSBI ID: 1179927 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Detecting Anomalies from Sound in the Context of Smart Home Using Unsupervised Learning on Edge Devices

Autori
Barišić, Marko

Vrsta, podvrsta i kategorija rada
Ocjenski radovi, diplomski rad, diplomski

Fakultet
Fakultet elektrotehnike i računarstva

Mjesto
Zagreb

Datum
09.07

Godina
2020

Stranica
50

Mentor
Podnar Žarko, Ivana

Ključne riječi
unsupervised learning ; sound anomaly detection ; autoencoder ; LSTM ; edge computing ; IoT

Sažetak
This thesis researches unsupervised sound anomaly detection, as there are many use-cases, including factories and smart homes, with transformative potential. To make sure that anomalies are identified efficiently and with low-latency without dependence on an Internet connection, which is needed for multiple uses, we use an edge device to infer closer to the sensor location. Since we work with time-series data, our architecture is made of LSTM units. We train the network, vary multiple neural network sizes on multiple devices and evaluate the results with metrics like inference time, accuracy, F1 and ROC. The results point out that the best performing network has a generalization power in around one-tenth of a second and can be performed on an affordable edge device. We propose further research steps to improve the neural network architecture and start applying the solution in practice.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Projekti:
HRZZ-IP-2019-04-1986 - Pametne usluge usmjerene čovjeku u interoperabilnim i decentraliziranim okolinama Interneta stvari (IoT4us) (Podnar Žarko, Ivana, HRZZ ) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Ivana Podnar Žarko (mentor)


Citiraj ovu publikaciju:

Barišić, Marko
Detecting Anomalies from Sound in the Context of Smart Home Using Unsupervised Learning on Edge Devices, 2020., diplomski rad, diplomski, Fakultet elektrotehnike i računarstva, Zagreb
Barišić, M. (2020) 'Detecting Anomalies from Sound in the Context of Smart Home Using Unsupervised Learning on Edge Devices', diplomski rad, diplomski, Fakultet elektrotehnike i računarstva, Zagreb.
@phdthesis{phdthesis, author = {Bari\v{s}i\'{c}, Marko}, year = {2020}, pages = {50}, keywords = {unsupervised learning, sound anomaly detection, autoencoder, LSTM, edge computing, IoT}, title = {Detecting Anomalies from Sound in the Context of Smart Home Using Unsupervised Learning on Edge Devices}, keyword = {unsupervised learning, sound anomaly detection, autoencoder, LSTM, edge computing, IoT}, publisherplace = {Zagreb} }
@phdthesis{phdthesis, author = {Bari\v{s}i\'{c}, Marko}, year = {2020}, pages = {50}, keywords = {unsupervised learning, sound anomaly detection, autoencoder, LSTM, edge computing, IoT}, title = {Detecting Anomalies from Sound in the Context of Smart Home Using Unsupervised Learning on Edge Devices}, keyword = {unsupervised learning, sound anomaly detection, autoencoder, LSTM, edge computing, IoT}, publisherplace = {Zagreb} }




Contrast
Increase Font
Decrease Font
Dyslexic Font