Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1179691

An Application-centred Resilient GNSS Position Estimation Algorithm based on Positioning Environment Conditions Awareness


Filjar, Renato
An Application-centred Resilient GNSS Position Estimation Algorithm based on Positioning Environment Conditions Awareness // Proceedings of the 2022 International Technical Meeting of The Institute of Navigation (ION ITM 2022), Long Beach, CA / Osechas, Okuary ; Blanch, Juan (ur.).
Manassas (VA): Institute of Navigation, 2022. str. 1123-1136 doi:10.33012/2022.18247 (predavanje, nije recenziran, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1179691 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
An Application-centred Resilient GNSS Position Estimation Algorithm based on Positioning Environment Conditions Awareness

Autori
Filjar, Renato

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the 2022 International Technical Meeting of The Institute of Navigation (ION ITM 2022), Long Beach, CA / Osechas, Okuary ; Blanch, Juan - Manassas (VA) : Institute of Navigation, 2022, 1123-1136

ISBN
978-0-936406-30-5

Skup
The 2022 International Technical Meeting of The Institute of Navigation (ION ITM 2022)

Mjesto i datum
Long Beach (CA), Sjedinjene Američke Države, 25.01.2022. - 27.01.2022

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Nije recenziran

Ključne riječi
GNSS position estimation ; GNSS application ; positioning environment awareness ; estimation ; statistical learning ; predictive model

Sažetak
A traditional receiver-centered GNSS positioning model addresses the GNSS resilience development with utilization of standardized global error correction models. Consideration of a GNSS receiver as a black-box unit that delivers position, velocity, and timing (PNT) services, renders the GNSS position estimation process inflexible for GNSS application development. Here we propose a novel concept and algorithm for a GNSS position estimation that relies upon the awareness of the immediate positioning environment conditions. A mathematical and algorithmic frameworks of the proposed approach in GNSS position estimation are outlined in which a mobile unit serves the radio frequency (satellite signal reception, condition and digitization) and base- band (pseudorange measurements, and navigation message parsing) domains. The GNSS position estimation and positioning environment effects mitigation become the responsibility of the navigation domain integrated with the targeted GNSS application. The accurate description of the immediate real-time positioning environment (geomagnetic, ionospheric, tropospheric, multi- path, but also jamming and spoofing) conditions is either obtained in real-time from mobile unit sensors, or provided by trusted third parties. The GNSS application adapts accordingly the GNSS position estimation algorithm, and deploys the pseudorange error correction models for the real immediate positioning environment conditions scenario. The application-centered GNSS position estimation algorithm becomes focused on the provision of the Positioning, Navigation, and Timing (PNT) Quality of Service (QoS) scaled to the application needs, thus providing the more efficient mitigation of the positioning environment adverse effects while at the same time optimising computing and energy resources. An initial proof-of-principle performance assessment with a bespoke statistical learning-based environment condition model in the case of a rapidly developing short-term geomagnetic storm shows up to 92% mean positioning error reduction, and more than 50% reduction in the positioning error standard deviation.

Izvorni jezik
Engleski

Znanstvena područja
Matematika, Elektrotehnika, Računarstvo, Zrakoplovstvo, raketna i svemirska tehnika

Napomena
Završna verzija rada objavljena u Zborniku radova je
popravljena sukladno komentarima recenzenata, ali
nije ponovno recenzirana.



POVEZANOST RADA


Ustanove:
Veleučilište Hrvatsko zagorje Krapina

Profili:

Avatar Url Renato Filjar (autor)

Poveznice na cjeloviti tekst rada:

doi www.ion.org

Citiraj ovu publikaciju:

Filjar, Renato
An Application-centred Resilient GNSS Position Estimation Algorithm based on Positioning Environment Conditions Awareness // Proceedings of the 2022 International Technical Meeting of The Institute of Navigation (ION ITM 2022), Long Beach, CA / Osechas, Okuary ; Blanch, Juan (ur.).
Manassas (VA): Institute of Navigation, 2022. str. 1123-1136 doi:10.33012/2022.18247 (predavanje, nije recenziran, cjeloviti rad (in extenso), znanstveni)
Filjar, R. (2022) An Application-centred Resilient GNSS Position Estimation Algorithm based on Positioning Environment Conditions Awareness. U: Osechas, O. & Blanch, J. (ur.)Proceedings of the 2022 International Technical Meeting of The Institute of Navigation (ION ITM 2022), Long Beach, CA doi:10.33012/2022.18247.
@article{article, author = {Filjar, Renato}, year = {2022}, pages = {1123-1136}, DOI = {10.33012/2022.18247}, keywords = {GNSS position estimation, GNSS application, positioning environment awareness, estimation, statistical learning, predictive model}, doi = {10.33012/2022.18247}, isbn = {978-0-936406-30-5}, title = {An Application-centred Resilient GNSS Position Estimation Algorithm based on Positioning Environment Conditions Awareness}, keyword = {GNSS position estimation, GNSS application, positioning environment awareness, estimation, statistical learning, predictive model}, publisher = {Institute of Navigation}, publisherplace = {Long Beach (CA), Sjedinjene Ameri\v{c}ke Dr\v{z}ave} }
@article{article, author = {Filjar, Renato}, year = {2022}, pages = {1123-1136}, DOI = {10.33012/2022.18247}, keywords = {GNSS position estimation, GNSS application, positioning environment awareness, estimation, statistical learning, predictive model}, doi = {10.33012/2022.18247}, isbn = {978-0-936406-30-5}, title = {An Application-centred Resilient GNSS Position Estimation Algorithm based on Positioning Environment Conditions Awareness}, keyword = {GNSS position estimation, GNSS application, positioning environment awareness, estimation, statistical learning, predictive model}, publisher = {Institute of Navigation}, publisherplace = {Long Beach (CA), Sjedinjene Ameri\v{c}ke Dr\v{z}ave} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font