Pregled bibliografske jedinice broj: 1178739
Complex Hydrological System Inflow Prediction using Artificial Neural Network
Complex Hydrological System Inflow Prediction using Artificial Neural Network // Tehnicki vjesnik - Technical Gazette, 29 (2022), 1; 172-177 doi:10.17559/tv-20200721133924 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1178739 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Complex Hydrological System Inflow Prediction using Artificial Neural Network
Autori
Matić, Petar ; Bego, Ozren ; Maleš, Matko
Izvornik
Tehnicki vjesnik - Technical Gazette (1330-3651) 29
(2022), 1;
172-177
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
artificial neural network ; complex hydrological system ; forecasted precipitation frequency ; inflow prediction ; prediction lag
Sažetak
Artificial neural networks have been successfully used to model and predict water flows for a few decades. Different network types have proven to work better in different cases and additional tools and algorithms have been implemented to improve those neural models. However, some problems still occur in certain cases. This paper deals with the limitation of complex hydrological system inflow prediction using artificial neural network and inflow time series. This limitation is called the prediction lag and it disables the model from giving accura te predictions. To eliminate the prediction lag and to extend prediction horizon an alt ernative input variable named forecasted precipitation frequency is proposed in addition to antecedent inflow time-series. Simulation results prove the efficiency of the proposed solution that enables time series neural network model for 7th-day inflow prediction. This represents important information in operational planning of the hydrological system, used for short-term optimization of the system, e.g. optimization of the hydroelectric power plant operation.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Interdisciplinarne tehničke znanosti
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split,
Pomorski fakultet, Split
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus