Pregled bibliografske jedinice broj: 1177461
Extension of Mathieu series and alternating Mathieu series involving Neumann function Y_nu
Extension of Mathieu series and alternating Mathieu series involving Neumann function Y_nu // Periodica mathematica Hungarica, 86 (2023), 1; 191-209 doi:10.1007/s10998-022-00471-9 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1177461 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Extension of Mathieu series and alternating Mathieu
series involving Neumann function Y_nu
Autori
Parmar K. Rakesh ; Milovanović V. Gradimir ; Poganj, Tibor
Izvornik
Periodica mathematica Hungarica (0031-5303) 86
(2023), 1;
191-209
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Mathieu and alternating Mathieu series ; Neumann function Y_nu ; Euler-Abel transformation of series ; Exponential integral E_1 ; Gubler-Weber formula ; Associated Legendre function of second kind ; Riemann Zeta function ; Dirichlet Eta function ; Polylogarithm ; Complete Butzer-Flocke-Hauss Omega function ; Functional bounding inequality
Sažetak
The main objective of this paper is to present a new extension of the familiar Mathieu series and the alternating Mathieu series S(r) and \widetilde S(r) which are denoted, respectively, by \mathbb S_{; ; \mu, \nu}; ; (r) and \widetilde{; ; \mathbb S}; ; _{; ; \mu, \nu}; ; (r). The computable series expansions of their related integral representations are obtained in terms of exponential integral E_1, and convergence rate discussion is provided for the associated series expansions. Further, for the series \mathbb S_{; ; \mu, \nu}; ; (r) and \widetilde{; ; \mathbb S}; ; _{; ; \mu, \nu}; ; (r), related expansions are presented in terms of the Riemann Zeta function and Dirichlet Eta function, also their series built in Gauss' 2F_1 functions and associated Legendre function of the second kind Q_mu^nu are given. Discussion also includes the extended versions of the complete Butzer-Flocke-Hauss Omega functions. Finally, functional bounding inequalities are derived for the investigated extensions of Mathieu-type series.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
NadSve-Sveučilište u Rijeci-uniri-pr-prirod-19-16 - Stohastičke metode u matematičkoj analizi (Krizmanić, Danijel, NadSve - UNIRI-plus projekti 2018) ( CroRIS)
Ustanove:
Pomorski fakultet, Rijeka
Profili:
Tibor Poganj
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet
- Zentrallblatt für Mathematik/Mathematical Abstracts