Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1177461

Extension of Mathieu series and alternating Mathieu series involving Neumann function Y_nu


Parmar K. Rakesh; Milovanović V. Gradimir; Poganj, Tibor
Extension of Mathieu series and alternating Mathieu series involving Neumann function Y_nu // Periodica mathematica Hungarica, 86 (2023), 1; 191-209 doi:10.1007/s10998-022-00471-9 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1177461 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Extension of Mathieu series and alternating Mathieu series involving Neumann function Y_nu

Autori
Parmar K. Rakesh ; Milovanović V. Gradimir ; Poganj, Tibor

Izvornik
Periodica mathematica Hungarica (0031-5303) 86 (2023), 1; 191-209

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Mathieu and alternating Mathieu series ; Neumann function Y_nu ; Euler-Abel transformation of series ; Exponential integral E_1 ; Gubler-Weber formula ; Associated Legendre function of second kind ; Riemann Zeta function ; Dirichlet Eta function ; Polylogarithm ; Complete Butzer-Flocke-Hauss Omega function ; Functional bounding inequality

Sažetak
The main objective of this paper is to present a new extension of the familiar Mathieu series and the alternating Mathieu series S(r) and \widetilde S(r) which are denoted, respectively, by \mathbb S_{; ; \mu, \nu}; ; (r) and \widetilde{; ; \mathbb S}; ; _{; ; \mu, \nu}; ; (r). The computable series expansions of their related integral representations are obtained in terms of exponential integral E_1, and convergence rate discussion is provided for the associated series expansions. Further, for the series \mathbb S_{; ; \mu, \nu}; ; (r) and \widetilde{; ; \mathbb S}; ; _{; ; \mu, \nu}; ; (r), related expansions are presented in terms of the Riemann Zeta function and Dirichlet Eta function, also their series built in Gauss' 2F_1 functions and associated Legendre function of the second kind Q_mu^nu are given. Discussion also includes the extended versions of the complete Butzer-Flocke-Hauss Omega functions. Finally, functional bounding inequalities are derived for the investigated extensions of Mathieu-type series.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
NadSve-Sveučilište u Rijeci-uniri-pr-prirod-19-16 - Stohastičke metode u matematičkoj analizi (Krizmanić, Danijel, NadSve - UNIRI-plus projekti 2018) ( CroRIS)

Ustanove:
Pomorski fakultet, Rijeka

Profili:

Avatar Url Tibor Poganj (autor)

Poveznice na cjeloviti tekst rada:

doi www.springer.com

Citiraj ovu publikaciju:

Parmar K. Rakesh; Milovanović V. Gradimir; Poganj, Tibor
Extension of Mathieu series and alternating Mathieu series involving Neumann function Y_nu // Periodica mathematica Hungarica, 86 (2023), 1; 191-209 doi:10.1007/s10998-022-00471-9 (međunarodna recenzija, članak, znanstveni)
Parmar K. Rakesh, Milovanović V. Gradimir & Poganj, T. (2023) Extension of Mathieu series and alternating Mathieu series involving Neumann function Y_nu. Periodica mathematica Hungarica, 86 (1), 191-209 doi:10.1007/s10998-022-00471-9.
@article{article, author = {Poganj, Tibor}, year = {2023}, pages = {191-209}, DOI = {10.1007/s10998-022-00471-9}, keywords = {Mathieu and alternating Mathieu series, Neumann function Y\_nu, Euler-Abel transformation of series, Exponential integral E\_1, Gubler-Weber formula, Associated Legendre function of second kind, Riemann Zeta function, Dirichlet Eta function, Polylogarithm, Complete Butzer-Flocke-Hauss Omega function, Functional bounding inequality}, journal = {Periodica mathematica Hungarica}, doi = {10.1007/s10998-022-00471-9}, volume = {86}, number = {1}, issn = {0031-5303}, title = {Extension of Mathieu series and alternating Mathieu series involving Neumann function Y\_nu}, keyword = {Mathieu and alternating Mathieu series, Neumann function Y\_nu, Euler-Abel transformation of series, Exponential integral E\_1, Gubler-Weber formula, Associated Legendre function of second kind, Riemann Zeta function, Dirichlet Eta function, Polylogarithm, Complete Butzer-Flocke-Hauss Omega function, Functional bounding inequality} }
@article{article, author = {Poganj, Tibor}, year = {2023}, pages = {191-209}, DOI = {10.1007/s10998-022-00471-9}, keywords = {Mathieu and alternating Mathieu series, Neumann function Y\_nu, Euler-Abel transformation of series, Exponential integral E\_1, Gubler-Weber formula, Associated Legendre function of second kind, Riemann Zeta function, Dirichlet Eta function, Polylogarithm, Complete Butzer-Flocke-Hauss Omega function, Functional bounding inequality}, journal = {Periodica mathematica Hungarica}, doi = {10.1007/s10998-022-00471-9}, volume = {86}, number = {1}, issn = {0031-5303}, title = {Extension of Mathieu series and alternating Mathieu series involving Neumann function Y\_nu}, keyword = {Mathieu and alternating Mathieu series, Neumann function Y\_nu, Euler-Abel transformation of series, Exponential integral E\_1, Gubler-Weber formula, Associated Legendre function of second kind, Riemann Zeta function, Dirichlet Eta function, Polylogarithm, Complete Butzer-Flocke-Hauss Omega function, Functional bounding inequality} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • MathSciNet
  • Zentrallblatt für Mathematik/Mathematical Abstracts


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font