Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1176471

Computability of glued manifolds


Čelar, Matea; Iljazović, Zvonko
Computability of glued manifolds // Journal of logic and computation, 32 (2021), 1; 65-97 doi:10.1093/logcom/exab063 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1176471 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Computability of glued manifolds

Autori
Čelar, Matea ; Iljazović, Zvonko

Izvornik
Journal of logic and computation (0955-792X) 32 (2021), 1; 65-97

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
computable topological space ; computable set ; semicomputable set ; manifold ; adjunction space

Sažetak
We examine conditions under which a semicomputable set in a computable topological space is computable. In particular we examine topological spaces $\Delta $ which have computable type, which means that any semicomputable set homeomorphic to $\Delta $ is computable. It is known that each compact manifold has computable type. In this paper we examine compact manifolds $M$ and $N$ and a space $M\cup _{; ; ; \gamma }; ; ; N$ obtained by gluing $M$ and $N$ together by way of a homeomorphism $\gamma :A\rightarrow B$, where $A$ and $B$ are closed subspaces of $M$ and $N$ respectively. We show that $M\cup _{; ; ; \gamma }; ; ; N$ in general need not have computable type. We prove that $M\cup _{; ; ; \gamma }; ; ; N$ has computable type under the additional assumption that $A$ and $B$ are contained in regular submanifolds of $M$ and $N$. We also show that the same holds for a space obtained by gluing finitely many manifolds, but not for infinitely many.

Izvorni jezik
Engleski

Znanstvena područja
Matematika, Računarstvo



POVEZANOST RADA


Projekti:
HRZZ-IP-2018-01-7459 - Izračunljive strukture, odlučivost i složenost (CompStruct) (Iljazović, Zvonko, HRZZ - 2018-01) ( CroRIS)

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Zvonko Iljazović (autor)

Poveznice na cjeloviti tekst rada:

doi academic.oup.com doi.org

Citiraj ovu publikaciju:

Čelar, Matea; Iljazović, Zvonko
Computability of glued manifolds // Journal of logic and computation, 32 (2021), 1; 65-97 doi:10.1093/logcom/exab063 (međunarodna recenzija, članak, znanstveni)
Čelar, M. & Iljazović, Z. (2021) Computability of glued manifolds. Journal of logic and computation, 32 (1), 65-97 doi:10.1093/logcom/exab063.
@article{article, author = {\v{C}elar, Matea and Iljazovi\'{c}, Zvonko}, year = {2021}, pages = {65-97}, DOI = {10.1093/logcom/exab063}, keywords = {computable topological space, computable set, semicomputable set, manifold, adjunction space}, journal = {Journal of logic and computation}, doi = {10.1093/logcom/exab063}, volume = {32}, number = {1}, issn = {0955-792X}, title = {Computability of glued manifolds}, keyword = {computable topological space, computable set, semicomputable set, manifold, adjunction space} }
@article{article, author = {\v{C}elar, Matea and Iljazovi\'{c}, Zvonko}, year = {2021}, pages = {65-97}, DOI = {10.1093/logcom/exab063}, keywords = {computable topological space, computable set, semicomputable set, manifold, adjunction space}, journal = {Journal of logic and computation}, doi = {10.1093/logcom/exab063}, volume = {32}, number = {1}, issn = {0955-792X}, title = {Computability of glued manifolds}, keyword = {computable topological space, computable set, semicomputable set, manifold, adjunction space} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • MathSciNet
  • Zentrallblatt für Mathematik/Mathematical Abstracts


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font