Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1175921

Determining residuary resistance per unit weight of displacement with Symbolic Regression and Gradient Boosted Tree algorithms


Baressi Šegota, Sandi; Lorencin, Ivan; Šercer, Mario; Car, Zlatan
Determining residuary resistance per unit weight of displacement with Symbolic Regression and Gradient Boosted Tree algorithms // Pomorstvo : scientific journal of maritime research, 35 (2021), 2; 287-296 doi:10.31217/p.35.2.11 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1175921 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Determining residuary resistance per unit weight of displacement with Symbolic Regression and Gradient Boosted Tree algorithms

Autori
Baressi Šegota, Sandi ; Lorencin, Ivan ; Šercer, Mario ; Car, Zlatan

Izvornik
Pomorstvo : scientific journal of maritime research (1332-0718) 35 (2021), 2; 287-296

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Artificial Intelligence, Gradient Boosted Trees, Hydrodynamic Modelling, Machine Learning, Symbolic Regression

Sažetak
Determining the residuary resistance per unit weight of displacement is one of the key factors in the design of vessels. In this paper, the authors utilize two novel methods – Symbolic Regression (SR) and Gradient Boosted Trees (GBT) to achieve a model which can be used to calculate the value of residuary resistance per unit weight, of displacement from the longitudinal position of the center of buoyancy, prismatic coefficient, length-displacement ratio, beam-draught ratio, length-beam ratio, and Froude number. This data is given as results of 308 experiments provided as a part of a publicly available dataset. The results are evaluated using the coefficient of determination (R2) and Mean Absolute Percentage Error (MAPE). Pre-processing, in the shape of correlation analysis combined with variable elimination and variable scaling, is applied to the dataset. The results show that while both methods achieve regression results, the result of regression of SR is relatively poor in comparison to GBT. Both methods provide slightly poorer, but comparable results to previous research focussing on the use of “black-box” methods, such as neural networks. The elimination of variables does not show a high influence on the modeling performance in the presented case, while variable scaling does achieve better results compared to the models trained with the non-scaled dataset.

Izvorni jezik
Engleski

Znanstvena područja
Brodogradnja, Računarstvo, Strojarstvo, Temeljne tehničke znanosti



POVEZANOST RADA


Profili:

Avatar Url Zlatan Car (autor)

Avatar Url Zlatan Car (autor)

Avatar Url Mario Šercer (autor)

Avatar Url Sandi Baressi Šegota (autor)

Avatar Url Ivan Lorencin (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada doi hrcak.srce.hr

Citiraj ovu publikaciju:

Baressi Šegota, Sandi; Lorencin, Ivan; Šercer, Mario; Car, Zlatan
Determining residuary resistance per unit weight of displacement with Symbolic Regression and Gradient Boosted Tree algorithms // Pomorstvo : scientific journal of maritime research, 35 (2021), 2; 287-296 doi:10.31217/p.35.2.11 (međunarodna recenzija, članak, znanstveni)
Baressi Šegota, S., Lorencin, I., Šercer, M. & Car, Z. (2021) Determining residuary resistance per unit weight of displacement with Symbolic Regression and Gradient Boosted Tree algorithms. Pomorstvo : scientific journal of maritime research, 35 (2), 287-296 doi:10.31217/p.35.2.11.
@article{article, author = {Baressi \v{S}egota, Sandi and Lorencin, Ivan and \v{S}ercer, Mario and Car, Zlatan}, year = {2021}, pages = {287-296}, DOI = {10.31217/p.35.2.11}, keywords = {Artificial Intelligence, Gradient Boosted Trees, Hydrodynamic Modelling, Machine Learning, Symbolic Regression}, journal = {Pomorstvo : scientific journal of maritime research}, doi = {10.31217/p.35.2.11}, volume = {35}, number = {2}, issn = {1332-0718}, title = {Determining residuary resistance per unit weight of displacement with Symbolic Regression and Gradient Boosted Tree algorithms}, keyword = {Artificial Intelligence, Gradient Boosted Trees, Hydrodynamic Modelling, Machine Learning, Symbolic Regression} }
@article{article, author = {Baressi \v{S}egota, Sandi and Lorencin, Ivan and \v{S}ercer, Mario and Car, Zlatan}, year = {2021}, pages = {287-296}, DOI = {10.31217/p.35.2.11}, keywords = {Artificial Intelligence, Gradient Boosted Trees, Hydrodynamic Modelling, Machine Learning, Symbolic Regression}, journal = {Pomorstvo : scientific journal of maritime research}, doi = {10.31217/p.35.2.11}, volume = {35}, number = {2}, issn = {1332-0718}, title = {Determining residuary resistance per unit weight of displacement with Symbolic Regression and Gradient Boosted Tree algorithms}, keyword = {Artificial Intelligence, Gradient Boosted Trees, Hydrodynamic Modelling, Machine Learning, Symbolic Regression} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Emerging Sources Citation Index (ESCI)
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font