Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1174843

Graph Neural Network for Source Code Defect Prediction


Šikić, Lucija; Kurdija, Adrian Satja; Vladimir, Klemo; Šilić, Marin
Graph Neural Network for Source Code Defect Prediction // IEEE access, 10 (2022), 10402-10415 doi:10.1109/ACCESS.2022.3144598 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1174843 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Graph Neural Network for Source Code Defect Prediction

Autori
Šikić, Lucija ; Kurdija, Adrian Satja ; Vladimir, Klemo ; Šilić, Marin

Izvornik
IEEE access (2169-3536) 10 (2022); 10402-10415

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Codes , Software , Predictive models , Feature extraction , Task analysis , Graph neural networks , Data models

Sažetak
Predicting defective software modules before testing is a useful operation that ensures that the time and cost of software testing can be reduced. In recent years, several models have been proposed for this purpose, most of which are built using deep learning-based methods. However, most of these models do not take full advantage of a source code as they ignore its tree structure or they focus only on a small part of a code. To investigate whether and to what extent information from this structure can be beneficial in predicting defective source code, we developed an end-to-end model based on a convolutional graph neural network (GCNN) for defect prediction, whose architecture can be adapted to the analyzed software, so that projects of different sizes can be processed with the same level of detail. The model processes the information of the nodes and edges from the abstract syntax tree (AST) of the source code of a software module and classifies the module as defective or not defective based on this information. Experiments on open source projects written in Java have shown that the proposed model performs significantly better than traditional defect prediction models in terms of AUC and F-score. Based on the F-scores of the existing state-of-the-art models, the model has shown comparable predictive capabilities for the analyzed projects.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Projekti:
HRZZ-IP-2018-01-6423 - Pouzdani kompozitni primjenski sustavi zasnovani na web uslugama (RELS) (Srbljić, Siniša, HRZZ ) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Poveznice na cjeloviti tekst rada:

doi ieeexplore.ieee.org

Citiraj ovu publikaciju:

Šikić, Lucija; Kurdija, Adrian Satja; Vladimir, Klemo; Šilić, Marin
Graph Neural Network for Source Code Defect Prediction // IEEE access, 10 (2022), 10402-10415 doi:10.1109/ACCESS.2022.3144598 (međunarodna recenzija, članak, znanstveni)
Šikić, L., Kurdija, A., Vladimir, K. & Šilić, M. (2022) Graph Neural Network for Source Code Defect Prediction. IEEE access, 10, 10402-10415 doi:10.1109/ACCESS.2022.3144598.
@article{article, author = {\v{S}iki\'{c}, Lucija and Kurdija, Adrian Satja and Vladimir, Klemo and \v{S}ili\'{c}, Marin}, year = {2022}, pages = {10402-10415}, DOI = {10.1109/ACCESS.2022.3144598}, keywords = {Codes , Software , Predictive models , Feature extraction , Task analysis , Graph neural networks , Data models}, journal = {IEEE access}, doi = {10.1109/ACCESS.2022.3144598}, volume = {10}, issn = {2169-3536}, title = {Graph Neural Network for Source Code Defect Prediction}, keyword = {Codes , Software , Predictive models , Feature extraction , Task analysis , Graph neural networks , Data models} }
@article{article, author = {\v{S}iki\'{c}, Lucija and Kurdija, Adrian Satja and Vladimir, Klemo and \v{S}ili\'{c}, Marin}, year = {2022}, pages = {10402-10415}, DOI = {10.1109/ACCESS.2022.3144598}, keywords = {Codes , Software , Predictive models , Feature extraction , Task analysis , Graph neural networks , Data models}, journal = {IEEE access}, doi = {10.1109/ACCESS.2022.3144598}, volume = {10}, issn = {2169-3536}, title = {Graph Neural Network for Source Code Defect Prediction}, keyword = {Codes , Software , Predictive models , Feature extraction , Task analysis , Graph neural networks , Data models} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font