Pregled bibliografske jedinice broj: 1173848
A variant of Wigner's theorem in normed spaces
A variant of Wigner's theorem in normed spaces // Mediterranean journal of mathematics, 18 (2021), 148, 11 doi:10.1007/s00009-021-01791-9 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1173848 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A variant of Wigner's theorem in normed spaces
Autori
Ilišević, Dijana ; Turnšek, Aleksej
Izvornik
Mediterranean journal of mathematics (1660-5446) 18
(2021);
148, 11
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Wigner's theorem ; isometry ; normed space ; support functional ; projective geometry
Sažetak
Let $X$ and $Y$ be normed spaces over $\mathbb{; ; ; F}; ; ; \in \{; ; ; \mathbb{; ; ; R}; ; ; , \mathbb{; ; ; C}; ; ; \}; ; ; $ and $f \colon X \to Y$ a surjective mapping. Suppose that $|\phi_{; ; ; f(y)}; ; ; (f(x))|=|\phi_y(x)|$ holds for all $x, y\in X$ and all support functionals $\phi_{; ; ; f(y)}; ; ; $ at $f(y)$ and $\phi_y$ at $y$, or equivalently, suppose that for all semi-inner products on $X$ and $Y$, compatible with given norms, $\vert [f(x), f(y)] \vert = \vert [x, y] \vert$ holds for all $x, y \in X$. Then $f=\sigma U$, where $\sigma \colon X \to \mathbb{; ; ; F}; ; ; $ is a phase function, and $U \colon X \to Y$ is a linear or a conjugate linear isometry.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2016-06-1046 - Operatori na C*-algebrama i Hilbertovim modulima (OCAHM) (Bakić, Damir, HRZZ - 2016-06) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Dijana Ilišević
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet
- Zentrallblatt für Mathematik/Mathematical Abstracts