Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1171467

Design of a SIMO Deep Learning-Based Chaos Shift Keying (DLCSK) Communication System


Mobini, Majid; Kaddoum, Georges; Herceg, Marijan
Design of a SIMO Deep Learning-Based Chaos Shift Keying (DLCSK) Communication System // Sensors, 22 (2022), 1; 333, 21 doi:10.3390/s22010333 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1171467 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Design of a SIMO Deep Learning-Based Chaos Shift Keying (DLCSK) Communication System

Autori
Mobini, Majid ; Kaddoum, Georges ; Herceg, Marijan

Izvornik
Sensors (1424-8220) 22 (2022), 1; 333, 21

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
chaos shift keying ; deep learning ; LSTM ; multi-antenna

Sažetak
This paper brings forward a Deep Learning (DL)- based Chaos Shift Keying (DLCSK) demodulation scheme to promote the capabilities of existing chaos-based wireless communication systems. In coherent Chaos Shift Keying (CSK) schemes, we need synchronization of chaotic sequences, which is still practically impossible in a disturbing environment. Moreover, the conventional Differential Chaos Shift Keying (DCSK) scheme has a drawback, that for each bit, half of the bit duration is spent sending non-information bearing reference samples. To deal with this drawback, a Long Short-Term Memory (LSTM)-based receiver is trained offline, using chaotic maps through a finite number of channel realizations, and then used for classifying online modulated signals. We presented that the proposed receiver can learn different chaotic maps and estimate channels implicitly, and then retrieves the transmitted messages without any need for chaos synchronization or reference signal transmissions. Simulation results for both the AWGN and Rayleigh fading channels show a remarkable BER performance improvement compared to the conventional DCSK scheme. The proposed DLCSK system will provide opportunities for a new class of receivers by leveraging the advantages of DL, such as effective serial and parallel connectivity. A Single Input Multiple Output (SIMO) architecture of the DLCSK receiver with excellent reliability is introduced to show its capabilities. The SIMO DLCSK benefits from a DL-based channel estimation approach, which makes this architecture simpler and more efficient for applications where channel estimation is problematic, such as massive MIMO, mmWave, and cloud-based communication systems.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek

Profili:

Avatar Url Marijan Herceg (autor)

Poveznice na cjeloviti tekst rada:

doi www.mdpi.com

Citiraj ovu publikaciju:

Mobini, Majid; Kaddoum, Georges; Herceg, Marijan
Design of a SIMO Deep Learning-Based Chaos Shift Keying (DLCSK) Communication System // Sensors, 22 (2022), 1; 333, 21 doi:10.3390/s22010333 (međunarodna recenzija, članak, znanstveni)
Mobini, M., Kaddoum, G. & Herceg, M. (2022) Design of a SIMO Deep Learning-Based Chaos Shift Keying (DLCSK) Communication System. Sensors, 22 (1), 333, 21 doi:10.3390/s22010333.
@article{article, author = {Mobini, Majid and Kaddoum, Georges and Herceg, Marijan}, year = {2022}, pages = {21}, DOI = {10.3390/s22010333}, chapter = {333}, keywords = {chaos shift keying, deep learning, LSTM, multi-antenna}, journal = {Sensors}, doi = {10.3390/s22010333}, volume = {22}, number = {1}, issn = {1424-8220}, title = {Design of a SIMO Deep Learning-Based Chaos Shift Keying (DLCSK) Communication System}, keyword = {chaos shift keying, deep learning, LSTM, multi-antenna}, chapternumber = {333} }
@article{article, author = {Mobini, Majid and Kaddoum, Georges and Herceg, Marijan}, year = {2022}, pages = {21}, DOI = {10.3390/s22010333}, chapter = {333}, keywords = {chaos shift keying, deep learning, LSTM, multi-antenna}, journal = {Sensors}, doi = {10.3390/s22010333}, volume = {22}, number = {1}, issn = {1424-8220}, title = {Design of a SIMO Deep Learning-Based Chaos Shift Keying (DLCSK) Communication System}, keyword = {chaos shift keying, deep learning, LSTM, multi-antenna}, chapternumber = {333} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font