Pregled bibliografske jedinice broj: 1171324
Riemannian Optimization for Distance-Geometric Inverse Kinematics
Riemannian Optimization for Distance-Geometric Inverse Kinematics // IEEE Transactions on Robotics, 1 (2021), 1-20 doi:10.1109/tro.2021.3123841 (međunarodna recenzija, članak, ostalo)
CROSBI ID: 1171324 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Riemannian Optimization for Distance-Geometric
Inverse Kinematics
Autori
Maric, Filip ; Giamou, Matthew ; Hall, Adam W. ; Khoubyarian, Soroush ; Petrovic, Ivan ; Kelly, Jonathan
Izvornik
IEEE Transactions on Robotics (1552-3098) 1
(2021);
1-20
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, ostalo
Ključne riječi
Robots , Kinematics , End effectors , Geometry , Global Positioning System , Robot kinematics , Transmission line matrix methods
Sažetak
Solving the inverse kinematics problem is a fundamental challenge in motion planning, control, and calibration for articulated robots. Kinematic models for these robots are typically parameterized by joint angles, generating a complicated mapping between the robot configuration and the end-effector pose. Alternatively, the kinematic model and task constraints can be represented using invariant distances between points attached to the robot. In this article, we formalize the equivalence of distance-based inverse kinematics and the distance geometry problem for a large class of articulated robots and task constraints. Unlike previous approaches, we use the connection between distance geometry and low-rank matrix completion to find inverse kinematics solutions by completing a partial Euclidean distance matrix through local optimization. Furthermore, we parameterize the space of Euclidean distance matrices with the Riemannian manifold of fixed-rank Gram matrices, allowing us to leverage a variety of mature Riemannian optimization methods. Finally, we show that bound smoothing can be used to generate informed initializations without significant computational overhead, improving convergence. We demonstrate that our inverse kinematics solver achieves higher success rates than traditional techniques and substantially outperforms them on problems that involve many workspace constraints.
Izvorni jezik
Engleski
Znanstvena područja
Matematika, Računarstvo, Interdisciplinarne tehničke znanosti
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus