Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1171159

Artificial Intelligence Techniques for Power System Transient Stability Assessment


Sarajcev, Petar; Kunac, Antonijo; Petrovic, Goran; Despalatovic, Marin
Artificial Intelligence Techniques for Power System Transient Stability Assessment // Energies, 15 (2022), 2; 507, 21 doi:10.3390/en15020507 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1171159 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Artificial Intelligence Techniques for Power System Transient Stability Assessment

Autori
Sarajcev, Petar ; Kunac, Antonijo ; Petrovic, Goran ; Despalatovic, Marin

Izvornik
Energies (1996-1073) 15 (2022), 2; 507, 21

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
power system stability ; transient stability assessment ; transient stability index ; artificial intelligence ; machine learning ; deep learning

Sažetak
The high penetration of renewable energy sources, coupled with decommissioning of conventional power plants, leads to the reduction of power system inertia. This has negative repercussions on the transient stability of power systems. The purpose of this paper is to review the state-of-the-art regarding the application of artificial intelligence to the power system transient stability assessment, with a focus on different machine, deep, and reinforcement learning techniques. The review covers data generation processes (from measurements and simulations), data processing pipelines (features engineering, splitting strategy, dimensionality reduction), model building and training (including ensembles and hyperparameter optimization techniques), deployment, and management (with monitoring for detecting bias and drift). The review focuses, in particular, on different deep learning models that show promising results on standard benchmark test cases. The final aim of the review is to point out the advantages and disadvantages of different approaches, present current challenges with existing models, and offer a view of the possible future research opportunities.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika



POVEZANOST RADA


Projekti:
IP-2019-04-7292 - Simulator poremećaja u elektroenergetskom sustavu i kalibrator nesinusnih napona i struja (SIMPES) (Petrović, Goran, HRZZ - 2019-04) ( CroRIS)

Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split

Poveznice na cjeloviti tekst rada:

doi www.mdpi.com

Citiraj ovu publikaciju:

Sarajcev, Petar; Kunac, Antonijo; Petrovic, Goran; Despalatovic, Marin
Artificial Intelligence Techniques for Power System Transient Stability Assessment // Energies, 15 (2022), 2; 507, 21 doi:10.3390/en15020507 (međunarodna recenzija, članak, znanstveni)
Sarajcev, P., Kunac, A., Petrovic, G. & Despalatovic, M. (2022) Artificial Intelligence Techniques for Power System Transient Stability Assessment. Energies, 15 (2), 507, 21 doi:10.3390/en15020507.
@article{article, author = {Sarajcev, Petar and Kunac, Antonijo and Petrovic, Goran and Despalatovic, Marin}, year = {2022}, pages = {21}, DOI = {10.3390/en15020507}, chapter = {507}, keywords = {power system stability, transient stability assessment, transient stability index, artificial intelligence, machine learning, deep learning}, journal = {Energies}, doi = {10.3390/en15020507}, volume = {15}, number = {2}, issn = {1996-1073}, title = {Artificial Intelligence Techniques for Power System Transient Stability Assessment}, keyword = {power system stability, transient stability assessment, transient stability index, artificial intelligence, machine learning, deep learning}, chapternumber = {507} }
@article{article, author = {Sarajcev, Petar and Kunac, Antonijo and Petrovic, Goran and Despalatovic, Marin}, year = {2022}, pages = {21}, DOI = {10.3390/en15020507}, chapter = {507}, keywords = {power system stability, transient stability assessment, transient stability index, artificial intelligence, machine learning, deep learning}, journal = {Energies}, doi = {10.3390/en15020507}, volume = {15}, number = {2}, issn = {1996-1073}, title = {Artificial Intelligence Techniques for Power System Transient Stability Assessment}, keyword = {power system stability, transient stability assessment, transient stability index, artificial intelligence, machine learning, deep learning}, chapternumber = {507} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font