Pregled bibliografske jedinice broj: 1171159
Artificial Intelligence Techniques for Power System Transient Stability Assessment
Artificial Intelligence Techniques for Power System Transient Stability Assessment // Energies, 15 (2022), 2; 507, 21 doi:10.3390/en15020507 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1171159 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Artificial Intelligence Techniques for Power System Transient Stability Assessment
Autori
Sarajcev, Petar ; Kunac, Antonijo ; Petrovic, Goran ; Despalatovic, Marin
Izvornik
Energies (1996-1073) 15
(2022), 2;
507, 21
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
power system stability ; transient stability assessment ; transient stability index ; artificial intelligence ; machine learning ; deep learning
Sažetak
The high penetration of renewable energy sources, coupled with decommissioning of conventional power plants, leads to the reduction of power system inertia. This has negative repercussions on the transient stability of power systems. The purpose of this paper is to review the state-of-the-art regarding the application of artificial intelligence to the power system transient stability assessment, with a focus on different machine, deep, and reinforcement learning techniques. The review covers data generation processes (from measurements and simulations), data processing pipelines (features engineering, splitting strategy, dimensionality reduction), model building and training (including ensembles and hyperparameter optimization techniques), deployment, and management (with monitoring for detecting bias and drift). The review focuses, in particular, on different deep learning models that show promising results on standard benchmark test cases. The final aim of the review is to point out the advantages and disadvantages of different approaches, present current challenges with existing models, and offer a view of the possible future research opportunities.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika
POVEZANOST RADA
Projekti:
IP-2019-04-7292 - Simulator poremećaja u elektroenergetskom sustavu i kalibrator nesinusnih napona i struja (SIMPES) (Petrović, Goran, HRZZ - 2019-04) ( CroRIS)
Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split
Profili:
Antonijo Kunac
(autor)
Marin Despalatović
(autor)
Goran Petrović
(autor)
Petar Sarajčev
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus