Pregled bibliografske jedinice broj: 1170535
On the Extensibility of Diophanitne D(−1)-Pairs to Quadruples
On the Extensibility of Diophanitne D(−1)-Pairs to Quadruples // 22nd International Mathematics Conference 2021
Dhaka, Bangladeš, 2021. (predavanje, recenziran, neobjavljeni rad, znanstveni)
CROSBI ID: 1170535 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On the Extensibility of Diophanitne D(−1)-Pairs to
Quadruples
Autori
Jukić Bokun, Mirela
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, neobjavljeni rad, znanstveni
Skup
22nd International Mathematics Conference 2021
Mjesto i datum
Dhaka, Bangladeš, 10.12.2021. - 11.12.2021
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Recenziran
Ključne riječi
Pellian equation ; Diophantine m-tuple ; Commutative ring
Sažetak
Let R be a commutative ring with unity. A set of m distinct elements in R such that the product of any two distinct elements increased by -1 is a perfect square is called a D(−1) − m-tuple in R. The existence of D(−1)-quadruples in a certain ring is closely related with the existence of positive integer solutions of some Pellian equations. We consider the solubility of the Pellian equation x2 − (n2k + 1)y2 = −n2l−1, (1) where n is a positive integer. We derived a generalized result concerning the equation of type (1) with the right-hand side equal to −m with some positive integer m. That result generate the results about the solvability of our initial equation (1). Moreover, we consider the equation x2 − (p2q2 + 1)y2 = −pq2, where p, q are primes and we completely solve the problem of its solvability in integers. By combining that results with other known results on the existence of Diophantine quadruples, we proved results on the ex- tensibility of some parametric families of D(−1)- pairs to quadruples in the ring Z[√−t], t > 0.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Sveučilište u Osijeku, Odjel za matematiku
Profili:
Mirela Jukić Bokun
(autor)