Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1170063

Sampling and Reconstruction of Sparse Signals in Shift-Invariant Spaces: Generalized Shannon's Theorem Meets Compressive Sensing


Vlašić, Tin; Seršić, Damir
Sampling and Reconstruction of Sparse Signals in Shift-Invariant Spaces: Generalized Shannon's Theorem Meets Compressive Sensing // IEEE Transactions on Signal Processing, 70 (2022), 438-451 doi:10.1109/TSP.2022.3141009 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1170063 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Sampling and Reconstruction of Sparse Signals in Shift-Invariant Spaces: Generalized Shannon's Theorem Meets Compressive Sensing
(Sampling and Reconstruction of Sparse Signals in Shift-Invariant Spaces: Generalized Shannon's Theorem Meets Compressive Sensing)

Autori
Vlašić, Tin ; Seršić, Damir

Izvornik
IEEE Transactions on Signal Processing (1053-587X) 70 (2022); 438-451

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
B-spline ; compressive sensing ; inverse problems ; sampling theory ; shift-invariant spaces ; sparse signal recovery

Sažetak
This paper introduces a novel framework and corresponding methods for sampling and reconstruction of sparse signals in shift- invariant (SI) spaces. We reinterpret the random demodulator, a system that acquires sparse bandlimited signals, as a system for the acquisition of linear combinations of the samples in the SI setting with the box function as the sampling kernel. The sparsity assumption is exploited by the compressive sensing (CS) paradigm for a recovery of the SI samples from a reduced set of measurements. The SI samples are subsequently filtered by a discrete-time correction filter to reconstruct expansion coefficients of the observed signal. Furthermore, we offer a generalization of the proposed framework to other compactly supported sampling kernels that span a wider class of SI spaces. The generalized method embeds the correction filter in the CS optimization problem which directly reconstructs expansion coefficients of the signal. Both approaches recast an inherently continuous- domain inverse problem in a set of finite- dimensional CS problems in an exact way. Finally, we conduct numerical experiments on signals in polynomial B-spline spaces whose expansion coefficients are assumed to be sparse in a certain transform domain. The coefficients can be regarded as parametric models of an underlying continuous- time signal, obtained from a reduced set of measurements. Such continuous signal representations are particularly suitable for signal processing without converting them into samples.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika



POVEZANOST RADA


Projekti:
HRZZ-IP-2019-04-6703 - Renesansa teorije uzorkovanja (SamplingRenaissance) (Seršić, Damir, HRZZ ) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Damir Seršić (autor)

Avatar Url Tin Vlašić (autor)

Poveznice na cjeloviti tekst rada:

doi ieeexplore.ieee.org

Citiraj ovu publikaciju:

Vlašić, Tin; Seršić, Damir
Sampling and Reconstruction of Sparse Signals in Shift-Invariant Spaces: Generalized Shannon's Theorem Meets Compressive Sensing // IEEE Transactions on Signal Processing, 70 (2022), 438-451 doi:10.1109/TSP.2022.3141009 (međunarodna recenzija, članak, znanstveni)
Vlašić, T. & Seršić, D. (2022) Sampling and Reconstruction of Sparse Signals in Shift-Invariant Spaces: Generalized Shannon's Theorem Meets Compressive Sensing. IEEE Transactions on Signal Processing, 70, 438-451 doi:10.1109/TSP.2022.3141009.
@article{article, author = {Vla\v{s}i\'{c}, Tin and Ser\v{s}i\'{c}, Damir}, year = {2022}, pages = {438-451}, DOI = {10.1109/TSP.2022.3141009}, keywords = {B-spline, compressive sensing, inverse problems, sampling theory, shift-invariant spaces, sparse signal recovery}, journal = {IEEE Transactions on Signal Processing}, doi = {10.1109/TSP.2022.3141009}, volume = {70}, issn = {1053-587X}, title = {Sampling and Reconstruction of Sparse Signals in Shift-Invariant Spaces: Generalized Shannon's Theorem Meets Compressive Sensing}, keyword = {B-spline, compressive sensing, inverse problems, sampling theory, shift-invariant spaces, sparse signal recovery} }
@article{article, author = {Vla\v{s}i\'{c}, Tin and Ser\v{s}i\'{c}, Damir}, year = {2022}, pages = {438-451}, DOI = {10.1109/TSP.2022.3141009}, keywords = {B-spline, compressive sensing, inverse problems, sampling theory, shift-invariant spaces, sparse signal recovery}, journal = {IEEE Transactions on Signal Processing}, doi = {10.1109/TSP.2022.3141009}, volume = {70}, issn = {1053-587X}, title = {Sampling and Reconstruction of Sparse Signals in Shift-Invariant Spaces: Generalized Shannon's Theorem Meets Compressive Sensing}, keyword = {B-spline, compressive sensing, inverse problems, sampling theory, shift-invariant spaces, sparse signal recovery} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font