Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1169748

Predictive approach to torque vectoring based on the Koopman operator


Švec, Marko; Ileš, Šandor; Matuško, Jadranko
Predictive approach to torque vectoring based on the Koopman operator // 2021 European Control Conference (ECC)
Delft: Institute of Electrical and Electronics Engineers (IEEE), 2022. str. 1341-1346 doi:10.23919/ecc54610.2021.9654836 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1169748 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Predictive approach to torque vectoring based on the Koopman operator

Autori
Švec, Marko ; Ileš, Šandor ; Matuško, Jadranko

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
2021 European Control Conference (ECC) / - Delft : Institute of Electrical and Electronics Engineers (IEEE), 2022, 1341-1346

ISBN
978-9-4638-4236-5

Skup
2021 European Control Conference (ECC)

Mjesto i datum
Rotterdam, Nizozemska, 29.06.2021. - 02.07.2021

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Koopman operator, basis function, data-driven methods, extended dynamic mode decomposition, model predictive control, vehicle dynamics

Sažetak
Torque Vectoring (TV) system uses an individually controlled electric powertrain to improve the dynamic behavior and enhance the handling and stability of a vehicle. In this paper, a Model Predictive Control (MPC) algorithm with a model of the vehicle identified using the Koopman operator theory is proposed. The Koopman operator is a linear predictor for nonlinear dynamical systems based on the lifting of the nonlinear dynamics in a higher-dimensional space where its evolution is linear. Using such a model may allow for achieving similar performance to those of a nonlinear MPC with the computational efficiency of a linear MPC. The Koopman MPC was compared to a Linear Time-Variant (LTV) MPC, a common approach in the existing literature, and showed increased performance.

Izvorni jezik
Engleski

Znanstvena područja
Interdisciplinarne tehničke znanosti, Informacijske i komunikacijske znanosti



POVEZANOST RADA


Projekti:

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Šandor Ileš (autor)

Avatar Url Marko Švec (autor)

Avatar Url Jadranko Matuško (autor)

Poveznice na cjeloviti tekst rada:

doi ieeexplore.ieee.org

Citiraj ovu publikaciju:

Švec, Marko; Ileš, Šandor; Matuško, Jadranko
Predictive approach to torque vectoring based on the Koopman operator // 2021 European Control Conference (ECC)
Delft: Institute of Electrical and Electronics Engineers (IEEE), 2022. str. 1341-1346 doi:10.23919/ecc54610.2021.9654836 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Švec, M., Ileš, Š. & Matuško, J. (2022) Predictive approach to torque vectoring based on the Koopman operator. U: 2021 European Control Conference (ECC) doi:10.23919/ecc54610.2021.9654836.
@article{article, author = {\v{S}vec, Marko and Ile\v{s}, \v{S}andor and Matu\v{s}ko, Jadranko}, year = {2022}, pages = {1341-1346}, DOI = {10.23919/ecc54610.2021.9654836}, keywords = {Koopman operator, basis function, data-driven methods, extended dynamic mode decomposition, model predictive control, vehicle dynamics}, doi = {10.23919/ecc54610.2021.9654836}, isbn = {978-9-4638-4236-5}, title = {Predictive approach to torque vectoring based on the Koopman operator}, keyword = {Koopman operator, basis function, data-driven methods, extended dynamic mode decomposition, model predictive control, vehicle dynamics}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, publisherplace = {Rotterdam, Nizozemska} }
@article{article, author = {\v{S}vec, Marko and Ile\v{s}, \v{S}andor and Matu\v{s}ko, Jadranko}, year = {2022}, pages = {1341-1346}, DOI = {10.23919/ecc54610.2021.9654836}, keywords = {Koopman operator, basis function, data-driven methods, extended dynamic mode decomposition, model predictive control, vehicle dynamics}, doi = {10.23919/ecc54610.2021.9654836}, isbn = {978-9-4638-4236-5}, title = {Predictive approach to torque vectoring based on the Koopman operator}, keyword = {Koopman operator, basis function, data-driven methods, extended dynamic mode decomposition, model predictive control, vehicle dynamics}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, publisherplace = {Rotterdam, Nizozemska} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font